This study conducted a systematic literature review on current and emerging trends in the use of artificial intelligence (AI) for community surveillance, using the PRISMA methodology and the paifal.ai tool for the selection and analysis of relevant sources. Five main thematic areas were identified: AI technologies, specific applications, societal impact, regulations and public policy. Our findings revealed exponential growth in the development and implementation of AI technologies, with applications ranging from public safety to environmental monitoring. However, this advancement poses significant challenges related to privacy, ethics and governance, driving a debate on the need for appropriate regulations. The analysis also highlighted the disparity in the adoption of these technologies among different communities, suggesting a need for inclusive policies to ensure equitable benefits. This study contributes to the understanding of the current scenario of AI in community policing, providing a solid foundation for future research and developments in the field.
The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
This research presents a bibliometric review of scientific production on the social and economic factors that influence mortality from tuberculosis between the years 2000 and 2024. The analysis covered 1742 documents from 848 sources, revealing an annual growth of 6% in scientific production with a notable increase starting in 2010, reaching a peak in 2021. This increase reflects growing concern about socioeconomic inequalities affecting tuberculosis mortality, exacerbated in part by the COVID-19 pandemic. The main authors identified in the study include Naghavi, Basu and Hay, whose works have had a significant impact on the field. The most prominent journals in the dissemination of this research are Plos One, International Journal of Tuberculosis and Lung Disease and The Lancet. The countries with the greatest scientific production include the United States, the United Kingdom, India and South Africa, highlighting a strong international contribution and a global approach to the problem. The semantic development of the research shows a concentration on terms such as “mortality rate”, “risk factors” and “public health”, with a thematic map highlighting driving themes such as “socioeconomic factors” and “developing countries”. The theoretical evolution reflects a growing interest in economic and social aspects to gender contexts and associated diseases. This study provides a comprehensive view of current scientific knowledge, identifying key trends and emerging areas for future research.
This article evaluates the Didactic Strategies for Teaching Mathematics (DSTM) program, designed to enhance the teaching of mathematical content in primary and secondary education in a hybrid modality. In alignment with SENACYT’s Gender-STEM-2040 Policy, which emphasizes gender equality as a foundational principle of education, this study aims to assess whether initial teacher training aligns with this policy through the use of mathematical strategies promoting gender equality. A descriptive-correlational approach was applied to a sample of 64 educators, selected based on their responses during the training, with the goal of improving teaching and data collection methodologies. Findings indicate that, although most teachers actively engage in training, an androcentric approach persists, with sexist language and a curriculum that renders girls invisible, hindering the fulfillment of the National Gender Equality Policy in Science, Technology, and Innovation of Panama (Gender-STEM Policy 2040). Additionally, through a serendipitous finding, a significant gap in student activity levels, especially in secondary school, was discovered. While in primary school, activity levels were similar between genders, a decline in active participation among girls in secondary school was observed. This discovery, not initially contemplated in the study’s objectives, provides valuable insights into gender differences in active participation, particularly in higher educational stages. The serendipity suggests the need for further exploration of social, environmental, and family factors that may influence this decrease in girls’ active participation. The article concludes with a preliminary diagnosis and a call to deepen gender equality training and the effective implementation of coeducation in Panama’s educational system.
The following paper assesses the relationship between electricity consumption, economic growth, environmental pollution, and Information and Communications Technology (ICT) development in Kazakhstan. Using the structural equation method, the study analyzes panel data gathered across various regions of Kazakhstan between 2014 and 2022. The data were sourced from official records of the Bureau of National Statistics of Kazakhstan and include all regions of Kazakhstan. The chosen timeframe includes the period from 2014, which marked a significant drop in oil prices that impacted the overall economic situation in the country, to 2022. The main hypotheses of the study relate to the impact of electricity consumption on economic growth, ICT, and environmental sustainability, as well as ICT’s role in economic development and environmental impact. The results show electricity consumption’s positive effect on economic growth and ICT development while also revealing an increase in pollutant emissions (emissions of liquid and gaseous pollutants) with economic growth and electricity consumption. The development of ICT in Kazakhstan has been revealed to not have a direct effect on reducing pollutant emissions into the environment, raising important questions about how technology can be leveraged to mitigate environmental impact, whether current technological advancements are sufficient to address environmental challenges, and what specific measures are needed to enhance the environmental benefits of ICT. There is a clear necessity to integrate sustainable practices and technologies to achieve balanced development. These results offer important insights into the relationships among electricity consumption, technology, economic development, and environmental issues. They underscore the complexity and multidimensionality of these interactions and suggest directions for future research, especially in the context of finding sustainable solutions for balanced development.
The Bini people of Edo State, located in the Edo South senatorial district, have been the focus of a study investigating the impact of international migration on Nigerian infrastructure. The study employed a descriptive-qualitative approach, using a survey research methodology and structured questionnaires to gather data from 401 respondents. The study used regression and thematic analysis to examine the collected data, focusing on the connection between migration and the advancement of infrastructure. The findings suggest that low incomes, job insecurity, and the development of domestic infrastructure contribute to the momentum behind international migration movements. The study suggests that remittances from migrants and investments are needed to alleviate the situation, highlighting the need for a more inclusive and sustainable approach to addressing the challenges faced by the Bini people in Edo State.
Copyright © by EnPress Publisher. All rights reserved.