This article emphasizes the critical role of the subsidiarity principle in facilitating adaptation to climate change. Employing a comparative legal analysis approach, the paper examines how this principle, traditionally pivotal in distributing powers within the European Union, could be adapted globally to manage climate change displacement. Specifically, it explores whether subsidiarity can surmount the challenges posed by national sovereignty and states’ reluctance to cede control over domestic matters. Findings indicate that while domestic efforts and local adaptations should be prioritized, international intervention becomes imperative when national capacities are overwhelmed. This article proposes that ‘causing countries’ and the global community bear a collective responsibility to act. The Asia-Pacific region, characterized by diverse and vulnerable ecosystems like small islands, coastal areas, and mountainous regions, serves as the focal point for this study. The research underscores the necessity of developing policies and further research to robustly implement the subsidiarity principle in protecting climate-displaced populations.
Climate change is the most important environmental problem of the 21st century. Severe climate changes are caused by changes in the average temperature and rainfall can affect economic sectors. On the other hand, the impact of climate change on countries varies depending on their level of development. Therefore, the aim of this paper is to investigate the relationship between climate changes and economic sectors in developed and developing countries for the period 1990–2021. For this purpose, a novel approach based on wavelet analysis and SUR model has been used. In this case, first all variables are decomposed into different frequencies (short, medium and long terms) using wavelet decomposition and then a SUR model is applied for the examination of climate change effects on agriculture, industry and services sectors in developed and developing countries. The findings indicate that temperature and rainfall have a significant negative and positive relationship with the agriculture, industry and services sectors in developed and developing countries, respectively. But severity of the negative effects is greater in the agricultural and industrial sectors in all frequencies (short, medium and long terms) compared to service sector. Furthermore, the severity of the positive effects is greater in the agricultural sector in all frequencies of developing countries compared to the industrial and services sectors. Finally, developing countries are more vulnerable to climate change in all sectors compared to developed countries.
The article is devoted to the issues of political and legal regulation of climate adaptation in the regions of the Russian Federation. Against the background of the adopted federal national adaptation plan, regions are tasked with identifying key areas of activity taking into account natural-climatic, demographic, environmental and technological specifics. The authors focus on the similarities and differences of the presented adaptation plans, emphasizing that work to improve this system continues within the framework of Russia’s international obligations. The Arctic regions deserve special attention, as they also differ from each other both in the selected climate adaptation activities (from ecology to energy saving) and in their number. This review provides a clear picture of how the federal ecological system can develop.
The intensification of urbanization worldwide, particularly in China, has led to significant challenges in maintaining sustainable urban environments, primarily due to the Urban Heat Island (UHI) effect. This effect exacerbates urban thermal stress, leading to increased energy consumption, poor air quality, and heightened health risks. In response, urban green spaces are recognized for their role in ameliorating urban heat and enhancing environmental resilience. This paper has studied the microclimate regulation effects of three representative classical gardens in Suzhou—the Humble Administrator’s Garden, the Lingering Garden and the Canglang Pavilion. It aims to explore the specific impacts of water bodies, vegetation and architectural features on the air temperature and relative humidity within the gardens. With the help of Geographic Information System (GIS) technology and the Inverse Distance Weighted (IDW) spatial interpolation method, this study has analyzed the microclimate regulation mechanisms in the designs of these traditional gardens. The results show that water bodies and lush vegetation have significant effects on reducing temperature and increasing humidity, while the architectural structures and rocks have affected the distribution and retention of heat to some extent. These findings not only enrich our understanding of the role of the design principles of classical gardens in climate adaptability but also provide important theoretical basis and practical guidance for the design of modern urban parks and the planning of sustainable urban environments. In addition, the study highlights GIS-based spatial interpolation as a valuable tool for visualizing and optimizing thermal comfort in urban landscapes, providing insights for developing resilient urban green spaces.
The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.
Copyright © by EnPress Publisher. All rights reserved.