The history of organic polymers is a remarkable journey from the discovery of natural materials like rubber and silk to the development of sophisticated synthetic polymers that have transformed industries and modern life. This comprehensive review article presents a detailed account of the evolution of organic polymers. It begins with the early uses of natural polymers and explores key breakthroughs, including the invention of Bakelite, nylon, and neoprene. The theoretical foundations of polymer science, laid by Hermann Staudinger, are discussed, and the post-war surge in polymer development is examined, including the introduction of polyethylene, polypropylene, and PVC. Notable advances in polymer chemistry, such as isotactic polypropylene and silicone polymers, are highlighted. The article also delves into the development of high-performance polymers like Kevlar and carbon-based materials, offering insights into their applications. Moreover, it discusses the current trends in polymer science, emphasizing sustainability and biodegradability. As the world continues to rely on polymers for numerous applications, this review provides a historical perspective and a glimpse into the future of organic polymers, where innovations are expected to shape various aspects of technology, healthcare, and environmental protection.
Water splitting has gained significant attention as a means to produce clean and sustainable hydrogen fuel through the electrochemical or photoelectrochemical decomposition of water. Efficient and cost-effective water splitting requires the development of highly active and stable catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Carbon nanomaterials, including carbon nanotubes, graphene, and carbon nanofibers, etc., have emerged as promising candidates for catalyzing these reactions due to their unique properties, such as high surface area, excellent electrical conductivity, and chemical stability. This review article provides an overview of recent advancements in the utilization of carbon nanomaterials as catalysts or catalyst supports for the OER and HER in water splitting. It discusses various strategies employed to enhance the catalytic activity and stability of carbon nanomaterials, such as surface functionalization, hybridization with other active materials, and optimization of nanostructure and morphology. The influence of carbon nanomaterial properties, such as defect density, doping, and surface chemistry, on electrochemical performance is also explored. Furthermore, the article highlights the challenges and opportunities in the field, including scalability, long-term stability, and integration of carbon nanomaterials into practical water splitting devices. Overall, carbon nanomaterials show great potential for advancing the field of water splitting and enabling the realization of efficient and sustainable hydrogen production.
This study examines the aggregate consumption function of Saudi Arabia from 2000 to 2022, focusing on identifying key determinants of household consumption and evaluating the impacts of disposable income, household wealth, government expenditure, interest rates, and oil revenues. the research uses advanced econometric methods, including the autoregressive distributed lag (ARDL) model and Johansen cointegration test, to analyze the relationships among these variables. the findings reveal that disposable income, household wealth, and government expenditure significantly and positively influence consumption, whereas interest rates show a negative correlation. oil revenues also play a critical role, reflecting the country’s economic reliance on oil. the study highlights the necessity for economic diversification to reduce the impact of oil price volatility on household income and consumption stability. The results offer crucial insights for policymakers, emphasizing the need for strategies that enhance household income and wealth, maintain robust public sector spending, and effectively manage interest rates. these findings also support the importance of consistent and predictable income sources for sustaining consumption. additionally, this study suggests directions for future research, including developing sophisticated forecasting models to predict consumption trends and exploring other influencing factors such as demographic shifts and technological progress.
Modern technologies have intensified innovations and necessitated changes in public service processes and operations. Continuous employee learning development (CELD) is one means of the molecule-atom that keep employees motivated and sustain competitiveness. The study explored the efficacy of CELD in relation to modern technology in the South African (SA) public service departments between 2014 to 2023 era. Departments are faced with challenge of equipping their employees with adequate professional and technical skills for both the present and the future in order to deliver specific government priorities. Data for the study were gathered utilizing a qualitative semi-structured e-questionnaire. The study sample consisted of 677 human capital development practitioners from national and provincial government departments in SA. The inefficacy CELD and the inadequacy of technological infrastructure and service delivery can be attributed to the failure by executive management and senior managers to invest in CELD to prepare employees for digital world. It is recommended that departments should use Ruggles’s knowledge management, Kirkpatrick’s training, and Becker and Schultz’s human capital models as sound measurement tools in order to gain a true return on investment. The study adds pragmatic insight into the value of CELD in the new technological environment in public service departments.
Background: According to the 2023 World Economic Forum report, the impact of Artificial Intelligence (AI) and automation on the job market was more significant than originally projected. Although 2018 research forecasted significant job losses balanced by job creation, current data indicates otherwise. Between 2023 and 2027, it is anticipated that 69 million new jobs will be created due to advancements in AI, however, this will be offset by the loss of 83 million jobs, leading to a net decrease of 14 million jobs worldwide. Roles related to AI, digitalization, and sustainability, such as AI specialists and renewable energy engineers are expected to grow, while those in clerical and administrative sectors are most at risk of decline. This shift underscores the need for reskilling and adapting to evolving fields, as nearly 44% of workers skills will face disruption by 2027. The demand for analytical thinking, technological literacy, and adaptability will grow as companies increasingly adopt frontier technologies. Objectives: (1) identify key variables influencing adaptability of college graduates in Indonesia, (2) quantify the strength of relationships between these variables to understand the combined effect on graduate adaptability. The research also aims to (3) develop theoretical and practical recommendations to strengthen ICIL policy and equip students with the relevant skills needed to thrive in an ever-changing job market. Methodology: The research focuses on predicting future employment trends, adaptability, and learning agility (LA), along with the implications for improving the Independent Campus Independent Learning (ICIL) policy. It focused on the significant unemployment rate among college graduates, along with the lack of research on the relationship between job change predictions, graduates’ adaptability, and the impact on graduates’ general well-being. The mixed-method strategy with quantitative analysis was used to conduct this research with data collected from 284 ICIL participants through online survey. The gathered data was evaluated using Structural Equation Modeling (SEM) with Lisrel version 10. Results: The result showed that job trend projections significantly influence responsiveness, which demonstrated a robust association between employment trend predictions and LA. Responsiveness significantly influenced learning agility which indicated no significant direct association between job trend projections and graduate adaptability. Conclusion: The research emphasized the need to consider adaptability as a concept with multiple dimensions. It proposed incorporating these factors into strategies for education and human resources development in order to better equip graduates for the demands of a constantly changing work market. Unique contribution: This research focused on adaptability as a multifaceted concept that consist of the ability to forecast job trends, be sensitive, and possess LA. It offered a deeper understanding of the relationships between these variables as discussed in the human resources literature. Technology, corporate culture, and training played a critical role in connecting employment trend prediction with the ability to respond effectively. Key recommendation: Institutions should implement a comprehensive approach to the development of human resources, with emphasis on fostering critical thinking, analytical abilities, and the practical application of information. By employing these tactics, higher education institutions may effectively equip graduates with both academic proficiency and the ability to adapt and thrive in quickly changing organizational environments, leading to the production of robust and versatile workers.
Copyright © by EnPress Publisher. All rights reserved.