This paper contributes to a long-standing debate in development practice: under what conditions can externally established participatory groups engage in the collective management of services beyond the life of a project? Using 10 years of panel data on water point functionality from Indonesia’s rural water program, the Program for Community-Based Water Supply and Sanitation, the paper explored the determinants of subnational variation in infrastructure sustainability. It then investigated positive and negative deviance cases to answer why some communities successfully engaged in system management despite being located in difficult conditions as per quantitative findings and vice versa. The findings show that differences in the implementation of community participation, driven by local social relations between frontline service providers, that is, village authorities and water user groups, explain sustainable management. This initial condition of state-society relations influences how the project is initiated, kicking off negative or positive reinforcing pathways, leading to community collective action or exit. The paper concludes that the relationships between frontline government representatives and community actors are important and are an underexamined aspect of the ability of external projects to generate successful community-led management of public goods.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Unmanned Aerial Vehicles (UAVs) have gained spotlighted attention in the recent past and has experienced exponential advancements. This research focuses on UAV-based data acquisition and processing to generate highly accurate outputs pertaining to orthomosaic imagery, elevation, surface and terrain models. The study addresses the challenges inherent in the generation and analysis of orthomosaic images, particularly the critical need for correction and enhancement to ensure precise application in fields like detailed mapping and continuous monitoring. To achieve superior image quality and precision, the study applies advanced image processing techniques encompassing Fuzzy Logic and edge-detection techniques. The study emphasizes on the necessity of an approach for countering the loss of information while mapping the UAV deliverables. By offering insights into both the challenges and solutions related to orthomosaic image processing, this research lays the groundwork for future applications that promise to further increase the efficiency and effectiveness of UAV-based methods in geomatics, as well as in broader fields such as engineering and environmental management.
Mapping land use and land cover (LULC) is essential for comprehending changes in the environment and promoting sustainable planning. To achieve accurate and effective LULC mapping, this work investigates the integration of Geographic Information Systems (GIS) with Machine Learning (ML) methodology. Different types of land covers in the Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite images. Since the research area consists of a variety of landforms, there are issues with classification accuracy. These challenges are met by combining supplementary data into the GIS framework and adjusting algorithm parameters like selection of cloud free images and homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban areas and agricultural land based on their suitability with settlements or crops. The classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to track changes in land cover, supporting resource management, urban planning, and environmental preservation. The results highlight how sophisticated computational methods can enhance the accuracy of LULC evaluations.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
This paper presents an effective method for performing audio steganography, which would help in improving the security of information transmission. Audio steganography is one of the techniques for hiding secret messages within an audio file to maintain communication secrecy from unwanted listeners. Most of these conventional methods have several drawbacks related to distortion, detectability, and inefficiency. To mitigate these issues, a new scheme is presented which combines the techniques of image interpolation with LSB encoding. It selects non-seed pixels to allow reversibility and diminish distortion in medical images. Our technique also embeds a fragile watermarking scheme to identify any breach during transmission to recover data securely and reliably. A magic rectangle has also been used for encryption to enhance data security. This paper proposes a robust, low-distortion audio steganography technique that provides high data integrity with undetectability and will have wide applications in sectors like e-healthcare, corporate data security, and forensic applications. In the future, this approach will be refined for broader audio formats and overall system robustness.
Copyright © by EnPress Publisher. All rights reserved.