Our environment has been significantly impacted by man-made pollutants, primarily due to industries making substantial use of synthetic chemicals, resulting in significant environmental consequences. In this research investigation, the co-precipitation approach was employed for the synthesis of cellulose-based ferric oxide (Fe2O3/cellulose) and copper oxide nanoparticles (CuOx-NPs). Scanning electron microscopy (SEM) analyses were conducted to determine the properties of the newly synthesised nanoparticles. Furthermore, the synthesized nanoparticles were employed for eliminating chromium from aqueous media under various conditions, including temperature, contact time, adsorbent concentration, adsorbate concentration, and pH. Additionally, the synthesised materials were used to recover Cr(VI) ions from real samples, including tap water, seawater, and industrial water, and the adsorptive capacity of both materials was evaluated under optimal conditions. The synthesis of Fe2O3/cellulose and CuOx-NPs proved to be effective, as indicated by the outcomes of the study.
Cucumber Variety ‘Drite L108’ (Cucumis sativus L. Cv. Derit L108) was selected as the test material. In the solar greenhouse, different days (1, 3, 5, 7, 9 d) of light (PAR < 200 µmol·m-2·s-1) and normal light conditions were designed with shading nets to observe the growth indexes of cucumber plants and the changes of antioxidant enzyme activities in leaves. The results showed that: (1) continuous low light increased the SPAD (relative chlorophyll) value of cucumber leaves and decreased the net photosynthetic rate. The longer the continuous low light days are, the smaller the net photosynthetic rate of cucumber leaves and the worse the photosynthetic recovery ability would be. (2) The plant height, stem diameter and leaf area per plant were lower than CK, and the above indexes could not return to the normal level after 9 days of normal light recovery; the yield and marketability of cucumber fruit decreased under continuous low illumination. (3) The activities of SOD (superoxide dismutase) and POD (peroxidase) in cucumber leaves increased, the activities of CAT (catalase) first increased and then decreased, and the content of MDA (malondialdehyde) continued to increase. The longer the days of continuous light keep, the more seriously the cucumber leaves were damaged by membrane lipid peroxidation. After continuous light for more than 7 days, the metabolic function of cucumber leaves was difficult to recover to the normal level.
Benzoxazine resin, a new type of phenolic resin, has many advantages, such as a strong molecular design, no small molecular release in the curing process, excellent thermal stability and mechanical properties, and a high residual carbon ratio. Thus, it is important for electronic communication industry matrix material. To meet the needs of high-frequency and high-speed communication technology for low-dielectric polymer resin, the low-dielectric modification of benzoxazine resin is of great significance to the high frequency and high-speed propagation of the signal, which attracts a wide range of materials researchers’ attention. In this paper, we review a series of studies on the low dielectric modification of benzoxazine resin in recent years, including the synthesis of new monomers, inorganic - organic hybridization, copolymerization with other resins, and low molecular weight benzoxazine resin research trends.
Green manufacturing is increasingly becoming popular, especially in lubricant manufacturing, as more environmentally friendly substitutes for mineral base oil and synthetic additives are being found among plant extracts and progress in methodologies for extraction and synthesis is being made. It has been observed that some of the important performance characteristics need enhancement, of which nanoparticle addition has been noted as one of the effective solutions. However, the concentration of the addictive that would optimised the performance characteristics of interest remains a contending area of research. The research was out to find how the concentration of green synthesized aluminum oxide nanoparticles in nano lubricants formed from selected vegetable oils influences friction and wear. A bottom-up green synthesis approach was adopted to synthesize aluminum oxide (Al2O3) from aluminum nitrate (Al(NO3)3) precursor in the presence of a plant-based reducing agent—Ipomoea pes-caprae. The synthesized Al2O3 nanoparticles were characterized using TEM and XRD and found to be mostly of spherical shape of sizes 44.73 nm. Al2O3 nanoparticles at different concentrations—0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, and 1.0 wt%—were used as additives to castor, jatropha, and palm kernel oils to formulate nano lubricants and tested alternately on a ball-on-aluminum (SAE 332) and low-carbon steel Disc Tribometer. All the vegetable-based oil nano lubricants showed a significant decrease in the coefficient of friction (CoF) and wear rate with Ball-on-(aluminum SAE 332) disc tribometer up to 0.5wt% of the nanoparticle: the best performances (eCOF = 92.29; eWR = 79.53) came from Al2O3-castor oil nano lubricant and Al2O3-palm kernel oil; afterwards, they started to increase. However, the performance indices displayed irregular behaviour for both COF and Wear Rate (WR) when tested on a ball-on-low-carbon steel Disc Tribometer.
Objective: To evaluate the clinical and radiographic results and complications of arthroscopic subcapital realignment osteotomy for the treatment of chronic and stable proximal femoral epiphysiolysis (PFE) in an initial series of patients. According to the literature review, the study presents the first description of an arthroscopic technique of this type of osteotomy. Methods: Between June 2012 and December 2014, seven patients underwent arthroscopic subcapital realignment osteotomy for the treatment of chronic, stable PFE. The mean age of the patients was 11 years and four months. Minimum follow-up ranged from 6 to 36 months (mean, 16.5 months). Patients were clinically evaluated according to the Harris Hip Score modified by Byrd and radiographically according to Southwick’s quantitative classification and the epiphyseal-diaphyseal angle. Postoperative complications were analyzed. Results: With regard to the evaluation of the Harris Hip Score Modified by Byrd clinical score, a preoperative mean of 35.8 points and a postoperative mean of 97.5 points were observed (p < 0.05). Radiographically, five patients were classified as Southwick grade II and two as grade III. A mean correction of the epiphyseal-diaphyseal angle of 40° was observed. There were no immediate postoperative complications. One patient developed avascular necrosis of the femoral head, without collapse or chondrolysis at the last follow-up (22 months). Conclusion: The arthroscopic technique presented by the authors for the treatment of chronic, stable PFE resulted in clinical and radiographic improvement of the patients in this initial series.
Under the background of green economic transformation, the sustainable utilization of ecological resources has become a trend, and bamboo all-for-one tourism has become a new development direction for bamboo-resource-rich areas. Based on the all-for-one tourism model and characteristics of bamboo resources, this paper puts forward a bamboo all-for-one tourism model, which shows the relationship between resources, products, and markets, and elaborates on the joint effect mechanism of industrial environment, governance environment, and external environment. Taking Yibin City, Sichuan Province as an example, this paper also analyzes existing problems of developing bamboo all-for-one tourism and then proposes suggestions to provide effective analytical ideas and reference, such as establishing a market-oriented all-product development model, introducing the sustainable development concept of bamboo management, establishing the management concept of sharing by all people, and driving all industries developing in a coordinated way.
Copyright © by EnPress Publisher. All rights reserved.