The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
Objective: This study synthesizes current evidence on the role of Artificial Intelligence (AI) and, where relevant, Open Science (OS) practices in enhancing Human Resource Management (HRM) performance. It focuses on recruitment processes, ethical considerations, and employee participation. Methodology: A systematic literature review was conducted in Scopus covering the period 2019–2024, following PRISMA guidelines. The initial search yielded 1486 records. After de-duplication and screening using Rayyan, 66 studies (≈ 4.4%) met the inclusion criteria, which targeted peer-reviewed works addressing AI-supported HR decision-making. A combined content and bibliometric analysis was performed in R (Bibliometrix) to identify thematic patterns and conceptual structures. Results: Analysis revealed four thematic clusters: 1) Implementation and employee participation emphasizing human-in-the-loop approaches and effective change management; 2) ethical challenges including algorithmic bias, transparency gaps, and data privacy risks; 3) data-driven decision-making delivering higher accuracy, fewer errors, and personalized recruitment and performance assessment; 4) operational efficiency enabling faster workflows and reduced administrative workloads. AI tools consistently improved selection quality, while OS practices promoted transparency and knowledge sharing. Implications: The successful adoption of AI in HRM requires employee engagement, strong ethical safeguards, and transparent data governance. Future research should address the long-term cultural, organizational, and well-being impacts of AI integration, as well as its sustainability.
The objective of this study was to examine the impact of utilizing smart algorithms on enhancing the operational performance of sports facilities in the Kingdom of Saudi Arabia. These algorithms, based on principles and concepts of artificial intelligence, aim to achieve functions such as learning, decision-making, data analysis, pattern recognition, planning, and problem-solving. The study aimed to identify the extent to which smart algorithms are utilized in sports facilities, assess the level of operational performance, explore the correlation between the use of smart algorithms and operational performance, and predict the level of operational performance based on the use of smart algorithms. The study employed a descriptive approach, specifically utilizing a survey study method. Participants included chairmen and members of boards of directors, executive directors, sports directors, administrators, specialists, and members of various committees. The study sample was intentionally selected from different categories within the study population. Two questionnaires were used to collect data from 325 participants. The findings revealed a lack of utilization of smart algorithms in sports facilities in the Kingdom of Saudi Arabia, indicating a low level of operational performance. Additionally, a correlation was observed between the use of smart algorithms and operational performance, suggesting that the level of operational performance can be predicted based on the utilization of smart algorithms. The study concludes that the implementation of intelligent algorithms can enhance the operational performance of sports facilities in the Kingdom of Saudi Arabia. It provides valuable insights into the effects of utilizing smart algorithms on improving operational performance.
Copyright © by EnPress Publisher. All rights reserved.