Cartography includes two major tasks: map making and map application, which is inextricably linked to artificial intelligence technology. The cartographic expert system experienced the intelligent expression of symbolism. After the spatial optimization decision of behaviorism intelligent expression, cartography faces the combination of deep learning under connectionism to improve the intelligent level of cartography. This paper discusses three problems about the proposition of “deep learning + cartography”. One is the consistency between the deep learning method and the map space problem solving strategy, based on gradient descent, local correlation, feature reduction and non-linear nature that answer the feasibility of the combination of “deep learning + cartography”; the second is to analyze the challenges faced by the combination of cartography from its unique disciplinary characteristics and technical environment, involving the non-standard organization of map data, professional requirements for sample establishment, the integration of geometric and geographical features, as well as the inherent spatial scale of the map; thirdly, the entry points and specific methods for integrating map making and map application into deep learning are discussed respectively.
In April 2023, the government of Changshu City, in Jiangsu Province, China, announced that it would officially use digital Chinese Yuan (E-CNY) as a method of wage payment to the government and state-owned enterprises staff starting in May. With the gradual improvement and application of E-CNY technologies, such as no electricity, no internet payment (offline payment), and the programmability of smart contracts, E-CNY will be officially used in China. CNN said China is on the verge of a cashless society. The advantages of E-CNY have a positive role in promoting the Chinese government’s implementation of the development goals of a low-carbon and sustainable economy. However, artificial intelligence (AI) trust concerns are the primary bottleneck in the current development based on intelligent algorithms and digital information technology. AI trust concerns are affecting the scope of use of E-CNY, and it may need to achieve effective scale-use, making it promote low-carbon and sustainable development. From the industry perspective, this article selects the housing rental enterprises, which are challenging to develop and energy-intensive, to analyze the theoretical approach and practical impact of E-CNY in promoting the low-carbon and sustainable development of China’s rental housing economy. Meanwhile, from the perspective of Chinese consumers, the impact of AI trust concerns on E-CNY in promoting low-carbon and sustainable development is analyzed in this article.
In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
Universities play a key role in university-industry-government interactions and are important in innovation ecosystem studies. Universities are also expected to engage with industries and governments and contribute to economic development. In the age of artificial intelligence (AI), governments have introduced relevant policies regarding the AI-enabled innovation ecosystem in universities. Previous studies have not focused on the provision of a dynamic capabilities perspective on such an ecosystem based on policy analysis. This research work takes China as a case and provides a framework of AI-enabled dynamic capabilities to guide how universities should manage this based on China’s AI policy analysis. Drawing on two main concepts, which are the innovation ecosystem and dynamic capabilities, we analyzed the importance of the AI-enabled innovation ecosystem in universities with governance regulations, shedding light on the theoretical framework that is simultaneously analytical and normative, practical, and policy-relevant. We conducted a text analysis of policy instruments to illustrate the specificities of the AI innovation ecosystem in China’s universities. This allowed us to address the complexity of emerging environments of innovation and draw meaningful conclusions. The results show the broad adoption of AI in a favorable context, where talents and governance are boosting the advance of such an ecosystem in China’s universities.
The introduction of artificial intelligence (AI) marks the beginning of a revolutionary period for the global economic environments, particularly in the developing economies of Africa. This concept paper explores the various ways in which AI can stimulate economic growth and innovation in developing markets, despite the challenges they face. By examining examples like VetAfrica, we investigate how AI-powered applications are transforming conventional business models and improving access to financial resources. This highlights the potential of AI in overcoming obstacles such as inefficient procedures and restricted availability of capital. Although AI shows potential, its implementation in these areas faces obstacles such as insufficient digital infrastructure, limited data availability, and a lack of necessary skills. There is a strong focus on the need for a balanced integration of AI, which involves aligning technological progress with ethical considerations and economic inclusivity. This paper focuses on clarifying the capabilities of AI in addressing economic disparities, improving productivity, and promoting sustainable development. It also aims to address the challenges associated with digital infrastructure, regulatory frameworks, and workforce transformation. The methodology involves a comprehensive review of relevant theories, literature, and policy documents, complemented by comparative analysis across South Africa, Nigeria, and Mauritius to illustrate transformative strategies in AI adoption. We propose strategic recommendations to effectively and ethically utilize the potential of AI, by advocating for substantial investments in digital infrastructure, education, and legal frameworks. This will enable Africa to fully benefit from the transformative impact of AI on its economic landscape. This discourse seeks to offer valuable insights for policymakers, entrepreneurs, and investors, emphasizing innovative AI applications for business growth and financing, thereby promoting economic empowerment in developing economies.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
Copyright © by EnPress Publisher. All rights reserved.