The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
This paper investigates the transformative role of Artificial Intelligence (AI) in enhancing infrastructure governance and economic outcomes. Through a bibliometric analysis spanning more than two decades of research from 2000 to 2024, the study examines global trends in AI applications within infrastructure projects. The analysis reveals significant research themes across diverse sectors, including urban development, healthcare, and environmental management, highlighting the broad relevance of AI technologies. In urban development, the integration of AI and Internet of Things (IoT) technologies is advancing smart city initiatives by improving infrastructure systems through enhanced data-driven decision-making. In healthcare, AI is revolutionizing patient care, improving diagnostic accuracy, and optimizing treatment strategies. Environmental management is benefiting from AI’s potential to monitor and conserve natural resources, contributing to sustainability and crisis management efforts. The study also explores the synergy between AI and blockchain technology, emphasizing its role in ensuring data security, transparency, and efficiency in various applications. The findings underscore the importance of a multidisciplinary approach in AI research and implementation, advocating for ethical considerations and strong governance frameworks to harness AI’s full potential responsibly.
Purpose: This research examines the intricate interplay between Business Intelligence (BI), Big Data Analytics (BDA), and Artificial Intelligence (AI) within the realm of Supply Chain Management (SCM). While the integration of these technologies has promised improved operational efficiency and decision-making capabilities, concerns about complexities and potential overreliance on technology persist. The study aims to provide insights into achieving a balance between data-driven insights and qualitative factors in SCM for sustained competitiveness. Design/methodology/approach: The research executed interviews with ten Arab Gulf-based consulting firms. These companies’ ability to successfully complete BI projects is well recognised. Findings: Through examining the interplay of human judgement and data-driven strategies, addressing integration challenges, and understanding the risks of excessive data reliance, the research enhances comprehension of the modern SCM landscape. It underscores BI’s foundational role, the necessity of balanced human input, and the significance of customer-centric strategies for lasting competitive advantage and relationships. Practical implications: The research provided information for organizations seeking to effectively navigate the complexities of integrating data-driven technologies in SCM. The research is a foundation for future studies to delve deeper into quantitative measurement methodologies and effective data security strategies in the SCM context. Originality: The research highlights the value of integrating BI, BDA, and AI in SCM for improved efficiency, cost reduction, and customer satisfaction, emphasising the need for a balanced approach that combines data-driven insights, human judgement, and customer-centric strategies to maintain competitiveness.
This study conducted a systematic literature review on current and emerging trends in the use of artificial intelligence (AI) for community surveillance, using the PRISMA methodology and the paifal.ai tool for the selection and analysis of relevant sources. Five main thematic areas were identified: AI technologies, specific applications, societal impact, regulations and public policy. Our findings revealed exponential growth in the development and implementation of AI technologies, with applications ranging from public safety to environmental monitoring. However, this advancement poses significant challenges related to privacy, ethics and governance, driving a debate on the need for appropriate regulations. The analysis also highlighted the disparity in the adoption of these technologies among different communities, suggesting a need for inclusive policies to ensure equitable benefits. This study contributes to the understanding of the current scenario of AI in community policing, providing a solid foundation for future research and developments in the field.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
Improving the practical skills of Science, Technology, Engineering and Mathematics (STEM) students at a historically black college and university (HBCU) was done by implementing a transformative teaching model. The model was implemented on undergraduate students of different educational levels in the Electrical Engineering (EE) Department at HBCU. The model was also extended to carefully chosen high and middle schools. These middle and high school students serve as a pipeline to the university, with a particular emphasis on fostering growth within the EE Department. The model aligns well with the core mission of the EE Department, aiming to enhance the theoretical knowledge and practical skills of students, ensuring that they are qualified to work in industry or to pursue graduate studies. The implemented model prepares students for outstanding STEM careers. It also increases enrolment, student retention, and the number of underrepresented minority graduates in a technology-based workforce.
Copyright © by EnPress Publisher. All rights reserved.