The economic viability of a photovoltaic (PV) installation depends on regulations regarding administrative, technical and economic conditions associated with self-consumption and the sale of surplus production. Royal Decree (RD) 244/2019 is the Spanish legislation of reference for this case study, in which we analyse and compare PV installation offers by key suppliers. The proposals are not optimal in RD 244/2019 terms and appear not to fully contemplate power generation losses and seem to shift a representative percentage of consumption to the production period. In our case study of a residential dwelling, the best option corresponds to a 5 kWp installation with surplus sale to the market, with a payback period of 18 years and CO2 emission reductions of 1026 kg/year. Demand-side management offers a potential improvement of 6%–21.8%. Based on the increase in electricity prices since 2020, the best option offers savings of up to €1507.74 and amortization in 4.24 years. Considering costs and savings, sale to the market could be considered as the only feasible regulatory mechanism for managing surpluses, accompanied by measures to facilitate administrative procedures and guarantees for end users.
With the increasing call for sustainable development, cities’ demand for green innovation has also been growing. However, relatively little research summarizes the influencing factors of urban green innovation. In this study, we conducted a visual analysis of 1193 research articles on green innovation in cities from the Web of Science core database using bibliometrics and visualization analysis. By analyzing co-occurrence, co-citation, and high-frequency keywords in the literature, we explored the current research status and development trends of influencing factors of urban green innovation and summarized the research in this field. The study found that collaboration among authors and institutions in this field needs to be strengthened to a certain extent. In addition, the study identified the research hotspots and frontiers in the field of urban green innovation, including “management”, “diffusion”, “smart city”, “indicator”, “sustainable city”, “governance”, and “environmental regulation”. Among them, “management”, “governance”, “indicator”, and “internet” are the research frontiers in this field, which are expected to have profound impacts on the future development of urban green innovation. The co-citation analysis results found that China has the highest research output in this field, followed by the United States, England, Australia, and Italy. In conclusion, this study uses CiteSpace software to identify important influencing factors and development trends of urban green innovation. Urban green innovation has gradually become a norm for social and collective behavior in the process of concretization, interdisciplinary development, and technological innovation. These findings have important reference value for promoting research and practice of urban green innovation.
ZnO nanostructures were obtained by electrodeposition on Ni foam, where graphene was previously grown by chemical vapor deposition (CVD). The resulting heterostructures were characterized by X-ray diffraction and SEM microscopy, and their potential application as a catalyst for the photodegradation of methylene blue (MB) was evaluated. The incorporation of graphene to the Ni substrate increases the amount of deposited ZnO at low potentials in comparison to bare Ni. SEM images show homogeneous growth of ZnO on Ni/G but not on bare Ni foam. A percent removal of almost 60% of MB was achieved by the Ni/G/ZnO sample, which represents a double quantity than the other catalysts proved in this work. The synergistic effects of ZnO-graphene heterojunctions play a key role in achieving better adsorption and photocatalytic performance. The results demonstrate the ease of depositing ZnO on seedless graphene by electrodeposition. The use of the film as a photocatalyst delivers interesting and competitive removal percentages for a potentially scalable degradation process enhanced by a non-toxic compound such as graphene.
This research investigates how accountants in Thailand are adapting to changes driven by advances in digital technology, environmental issues, and professional accounting organizations. The study identifies key factors influencing these shifts and assesses their impact on the accounting field. A survey of accountants from large manufacturing firms in Thailand was conducted, examining internal, external, and personal factors affecting their roles and responsibilities. The study uses Structural Equation Modeling (SEM) to analyze data from 174 respondents, identifying leadership and digital technology readiness as internal factors; sustainability force, professional entity, and digital technology force as external factors; and competency skills and attitude as personal factors. The fit indices collectively suggest that the model has a good fit to the data, demonstrated by Comparative Fit Index (CFI) value (0.91), Tucker-Lewis Index (TLI) (0.891), Root Mean Squared Error of Approximation (RMSEA) (0.067), and chi-square/degree of freedom model (1.776). The combination of the indices supports the conclusion that the model is robust and well-aligned with the observed data, and importantly capturing the relationships between the constructs under the study. Results reveal a significant transformation in the professional identity of Thai accountants, primarily driven by their positive attitude towards changes. Notably, professional accounting bodies and educational institutions appear to hinder this evolution. The findings emphasize the need for professional organizations to realign their strategies to better support the evolving roles of accountants.
Synthesis of macro-mesoporous Titania (Titanium dioxide-TiO2) nanospheres was successfully achieved using a modified template-free methodology to incorporate macroporous channels into a mesoporous TiO2 framework to form mixed macro-mesoporous TiO2 spheres (MMPT), which were doped with carbon dots (C-dots) to form improved nanocomposites (C-dots@MMPT). Elemental composition, surface bonding and optical properties of these nanocomposites were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and ultraviolet-visible absorption spectroscopy (UV-VIS). Evaluation of photocatalytic activity for each (C-Dots@MMPT) sample was performed via degrading the Methylene Blue (MB) dye compared with bare samples (MMPT) under visible light irradiation using 300 Watt halogen lamp.
Copyright © by EnPress Publisher. All rights reserved.