Data literacy is an important skill for students in studying physics. With data literacy, students have the ability to collect, analyze and interpret data as well as construct data-based scientific explanations and reasoning. However, students’ ability to data literacy is still not satisfactory. On the other hand, various learning strategies still provide opportunities to design learning models that are more directed at data literacy skills. For this reason, in this research a physics learning model was developed that is oriented towards physics objects represented in various modes and is called the Object-Oriented Physics Learning (OOPL) Model. The learning model was developed through several stages and based on the results of the validity analysis; it shows that the OOPL model is included in the valid category. The OOPL model fulfils the elements of content validity and construct validity. The validity of the OOPL model and its implications are discussed in detail in the discussion.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
The cost of diagnostic errors has been high in the developed world economics according to a number of recent studies and continues to rise. Up till now, a common process of performing image diagnostics for a growing number of conditions has been examination by a single human specialist (i.e., single-channel recognition and classification decision system). Such a system has natural limitations of unmitigated error that can be detected only much later in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. At the same time Machine Intelligence (ML, AI) systems, specifically those including deep neural network and large visual domain models have made significant progress in the field of general image recognition, in many instances achieving the level of an average human and in a growing number of cases, a human specialist in the effectiveness of image recognition tasks. The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and advantages of the rapidly evolving Artificial Intelligence technology to achieve real and measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. The proposal for a collaborative AI-human image diagnostics system falls directly into the scope of this program.
In the realm of modern education, the integration of technology has emerged as a powerful catalyst for transforming traditional classrooms into dynamic and engaging learning environments. This paper provides a concise overview of the multifaceted ways in which technology contributes to enhanced classroom engagement.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
Teachers are instrumental in advancing the cognitive and motor skills of children with autism. Despite their importance, the incorporation of both educators and robotic aids in the educational frameworks of specialized schools and centers is infrequent. Extensive research has been conducted to evaluate the impact of robotic assistance on the learning outcomes for children with autism. This study investigates the effects of the Furhat robot on the educational experiences of autistic children in schools, analyzing its utility both with and without the presence of teachers. Interviews with educators were carried out to gauge the effectiveness of implementing Furhat robots in these settings. Data collected from sessions with autistic children were analyzed using ANOVA tests, offering insights into the Furhat Social Robot’s potential as a significant tool for fostering engagement and interaction. The findings highlight the robot’s effectiveness in enhancing social interaction and engagement, thereby contributing to the ongoing discussion on how social robots can improve the developmental progress and well-being of children with autism. Moreover, this paper underlines the innovative aspects of our proposed model and its wider implications. By presenting specific quantitative outcomes, our aim is to extend the reach of our findings to a broader audience. Ultimately, this research delineates significant contributions to the understanding of social robots, such as Furhat, in improving the overall well-being and developmental trajectories of children with autism.
Copyright © by EnPress Publisher. All rights reserved.