With the gradual penetration of artificial intelligence technology into various fields of society, it has brought many deeper and broader impacts, gradually improving the status of artificial intelligence in talent cultivation and education to adapt to the current development of social intelligence technology. Therefore, as the core course of artificial intelligence education in universities, machine learning needs to deeply analyze and explore the main factors that affect its development, in order to better mobilize students' learning enthusiasm and teachers' educational innovation, enhance the teaching and learning effectiveness of the course, and maximize the exploration of the educational achievements of artificial intelligence.
The construction of researcher profiles is crucial for modern research management and talent assessment. Given the decentralized nature of researcher information and evaluation challenges, we propose a profile system for Chinese researchers based on unsupervised machine learning and algorithms. This system builds comprehensive profiles based on researchers’ basic and behavior information dimensions. It employs Selenium and Web Crawler for real-time data retrieval from academic platforms, utilizes TF-IDF and BERT for expertise recognition, DTM for academic dynamics, and K-means clustering for profiling. The experimental results demonstrate that these methods are capable of more accurately mining the academic expertise of researchers and performing domain clustering scoring, thereby providing a scientific basis for the selection and academic evaluation of research talents. This interactive analysis system aims to provide an intuitive platform for profile construction and analysis.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
The failure to achieve sustainable development in South Africa is due to the inability to deliver quality and adequate health services that would lead to the achievement of sustainable human security. As we live in an era of digital technology, Machine Learning (ML) has not yet permeated the healthcare sector in South Africa. Its effects on promoting quality health services for sustainable human security have not attracted much academic attention in South Africa and across the African continent. Hospitals still face numerous challenges that have hindered achieving adequate health services. For this reason, the healthcare sector in South Africa continues to suffer from numerous challenges, including inadequate finances, poor governance, long waiting times, shortages of medical staff, and poor medical record keeping. These challenges have affected health services provision and thus pose threats to the achievement of sustainable security. The paper found that ML technology enables adequate health services that alleviate disease burden and thus lead to sustainable human security. It speeds up medical treatment, enabling medical workers to deliver health services accurately and reducing the financial cost of medical treatments. ML assists in the prevention of pandemic outbreaks and as well as monitoring their potential epidemic outbreaks. It protects and keeps medical records and makes them readily available when patients visit any hospital. The paper used a qualitative research design that used an exploratory approach to collect and analyse data.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
Copyright © by EnPress Publisher. All rights reserved.