The recent development of characteristic towns has encountered a multitude of challenges and chaos. Nevertheless, there have been many instances of information asymmetry due to the absence of an effective management model and an intuitive digital management system. Consequently, this has caused the erosion of public interests and inadequate supervision by public agencies. As society is progressing at a rapid pace, there is a growing apprehension regarding poor management synergy, outdated management practices, and limited use of technology in traditional construction projects. In today's technologically sophisticated society characterized by the “Internet+” and intelligent management, there is an urgent requirement to identify a more efficient collaborative management model, thereby reducing errors caused by information asymmetry. This paper focuses on the integration of building information modeling (BIM) and integrated project delivery (IPD) for collaborative management within characteristic towns in the PPP mode. By analyzing the available literature on the application status, this study investigates the implementation methods and framework construction of collaborative management while exploring the advantages and disadvantages. On this basis, this study highlights the problems that arise and provides recommendations for improvement. Considering this, the application of the BIM-based IPD model to characteristic towns in PPP mode will enhance the effectiveness of collaborative management among all parties involved, thereby fostering an environment that facilitates decision-making and operational management in the promotion of characteristic industries.
Ancient Minipe Anicut, Sri Lanka is world-famous for its engineering excellence. Due to its importance, conserving the ancient anicut, another anicut was constructed downstream in the 20th century. Nevertheless, the water diverted from the ancient anicut to the Minipe Left Bank (LB) Canal was kept as it was due to inherited agricultural importance. This research focuses on studying the contributions made by the adjacent catchment along the Minipe LB Canal. There are several level crossings along the Minipe Left Bank Canal from which the runoff of the local catchment flow into the Minipe LB Canal. Hydrologic Modeling System (HEC-HMS) is used to obtain the yield from each catchment into the Canal, which was compared with the annual diversions from Minipe anicut. The total yield from each stream has been compared with the annual diversion of the Minipe LB Canal from 2014 to 2020. The results obtained from this study reveal that there is sufficient water available for water augmentation in the basin, with an estimated annual average cumulative yield from the catchment of 453.6 MCM. This cumulative yield is 1.7 times the annual average diversion from the Mahaweli River, which is 271.9 MCM. With the findings, it is concluded that there is a potential to augment water from the catchment to address pertaining water shortages conveyance in the command area.
This investigation extends into the intricate fabric of customer-based corporate reputation within the banking industry, applying advanced analytics to decipher the nuances of customer perceptions. By integrating structural equation modeling, particularly through SmartPLS4, we thoroughly examine the interrelations of perceived quality, competence, likeability, and trust, and how they culminate in customer satisfaction and loyalty. Our comprehensive dataset is drawn from a varied demographic of banking consumers, ensuring a holistic view of the sector’s reputation dynamics. The research reveals the profound influence of these constructs on customer decision-making, with likeability emerging as a critical driver of satisfaction and allegiance to the bank. We also rigorously test our model’s internal consistency and convergent validity, establishing its reliability and robustness. While the direct involvement of Business Intelligence (BI) tools in the research design may not be overtly articulated, the analytical techniques and data-driven approach at the core of our methodology are synonymous with BI’s capabilities. The insights garnered from our analysis have direct implications for data-driven decision-making in banking. They inform strategies that could include enhancing service personalization, refining reputation management, and improving customer retention efforts. We acknowledge the need to more explicitly detail the role of BI within the research process. BI’s latent presence is inherent in the analytical processes employed to interpret complex data and generate actionable insights, which are crucial for crafting targeted marketing strategies. In summary, our research not only contributes to academic discourse on marketing and customer perception but also implicitly demonstrates the value that BI methodologies bring to understanding and influencing consumer behavior in the banking sector. It is this blend of analytics and marketing intelligence that equips banks with the strategic leverage necessary to thrive in today’s competitive financial landscape.
In the realm of evolving e-commerce sales channels, the e-commerce sale of agricultural products has become a vital avenue for cherry farmers. However, a notable discrepancy exists between the intentions and actual behaviors of cherry farmers regarding e-commerce participation. In this study, binary logistic regression and interpretive structural model were used, and the cherry producing area of Yantai City, Shandong Province, China, was taken as the study area, and a total of 501 actual valid questionnaires were returned, and the validity rate of the questionnaires was 95.1 per cent. The results of the study show that the deviation of cherry farmers’ willingness and behavior is mainly affected by age, frequency of online shopping, whether to participate in e-commerce training, and whether to join a cooperative in farmers’ individual characteristics, revenue expectations and profit expectations in behavioral attitudes, government publicity and neighborhood effects in subjective norms, e-commerce use in perceived behavioral attitudes, the number of agricultural population in household resource endowment and logistics costs and e-commerce training in external scenarios Impact. On this basis, the 11 influencing factors are analyzed in depth and three transmission paths are analyzed. The study further proposes recommendations to enhance the translation of cherry farmers’ e-commerce intentions into action, such as bolstering e-commerce promotion, increasing the frequency of training, improving supporting infrastructure, and reducing logistics costs.
Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of and , while temperature profile increases for increasing values of and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of and the drag coefficient increases and the Nusselt number decreases for rising values of and The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.
Copyright © by EnPress Publisher. All rights reserved.