The artificial intelligence (AI)-based architect’s profile’s selection (simply iSelection) uses a polymathic mathematical model and AI-subdomains’ integration for enabling automated and optimized human resources (HR) processes and activities. HR-related processes and activities in the selection, support, problem-solving, and just-in-time evaluation of a transformation manager’s or key team members’ polymathic profile (TPProfile). Where a TPProfile can be a classical business manager, transformation manager, project manager, or an enterprise architect. iSelection-related selection processes use many types of artifacts, like critical success factors (CSF), AI-subdomain’ integration environments, and an enterprise-wide decision-making system (DMS). iSelection focuses on TPProfiles for various kinds of transformation projects, like the case of the transformation of enterprises’ HRs (EHR) processes, activities, and related fields, like enterprise resources planning (ERP) environments, financial systems, human factors (HF) evolution, and AI-subdomains. The iSelection tries to offer a well-defined (or specific) TPProfile, which includes HF’s original-authentic capabilities, education, affinities, and possible polymathical characteristics. Such a profile can also be influenced by educational or training curriculum (ETC), which also takes into account transformation projects’ acquired experiences. Knowing that selected TPProfiles are supported by an internal (or external) transformation framework (TF), which can support standard transformation activities, and solving various types of iSelection’s problems. Enterprise transformation projects (simply projects) face extremely high failure rates (XHFR) of about 95%, which makes EHR selection processes very complex.
This quantitative survey was non-experimental and had two goals. An evaluation of predictor variables of empowerment, motivation, teamwork, interpersonal skills, and training and development in project environments was one goal to help explain the industry’s high project failure rate. Second, this research tested Bandura’s social learning theory and tested the hypothesis that empowerment and motivation boost performance. Using a survey-based questionnaire, the data was collected from 212 employees working in different IT companies in Pakistan. The results revealed that empowerment, motivation, teamwork, and training and development have a significant impact on project performance. Using the results, this study proposes theoretical implications for the researchers and managerial implications for the organizations.
Copyright © by EnPress Publisher. All rights reserved.