Countering cyber extremism is a crucial challenge in the digital age. Social media algorithms, if designed and used properly, have the potential to be a powerful tool in this fight, development of technological solutions that can make social networks a safer and healthier space for all users. this study mainly aims to provide a comprehensive view of the role played by the algorithms of social networking sites in countering electronic extremism, and clarifying the expected ease of use by programmers in limiting the dissemination of extremist data. Additionally, to analyzing the intended benefit in controlling and organizing digital content for users from all societal groups. Through the systematic review tool, a variety of previous literature related to the applications of algorithms in the field of online radicalization reduction was evaluated. Algorithms use machine learning and analysis of text and images to detect content that may be harmful, hateful, or call for violence. Posts, comments, photos and videos are analyzed to detect any signs of extremism. Algorithms also contribute to enhancing content that promotes positive values, tolerance and understanding between individuals, which reduces the impact of extremist content. Algorithms are also constantly updated to be able to discover new methods used by extremists to spread their ideas and avoid detection. The results indicate that it is possible to make the most of these algorithms and use them to enhance electronic security and reduce digital threats.
This paper tries to understand economic, social and legal implications of the introduction and usage of MediSearch (AI search engine) in the Indian healthcare context. Discussing the economic ramifications, the paper highlights the potential for cost savings, the influence on healthcare accessibility, and the shifts in traditional medical paradigms. On the social side, the study explains ability of AI based platforms to bridge healthcare disparities, with a potential for enhancing general health literacy among the general population. From a legal standpoint, study highlights the concerns related to data privacy, regulatory issues, and possible malpractice implications. With the integration of these perspectives, the study also explains opportunities, challenges and future of MediSearch from the Indian health perspective.
The rapid advancement of artificial intelligence (AI) technology is profoundly transforming the information ecosystem, reshaping the ways in which information is produced, distributed, and consumed. This study explores the impact of AI on the information environment, examining the challenges and opportunities for sustainable development in the age of AI. The research is motivated by the need to address the growing concerns about the reliability and sustainability of the information ecosystem in the face of AI-driven changes. Through a comprehensive analysis of the current AI landscape, including a review of existing literature and case studies, the study diagnoses the social implications of AI-driven changes in information ecosystems. The findings reveal a complex interplay between technological innovation and social responsibility, highlighting the need for collaborative governance strategies to navigate the tensions between the benefits and risks of AI. The study contributes to the growing discourse on AI governance by proposing a multi-stakeholder framework that emphasizes the importance of inclusive participation, transparency, and accountability in shaping the future of information. The research offers actionable insights for policymakers, industry leaders, and civil society organizations seeking to foster a trustworthy and inclusive information environment in the era of AI, while harnessing the potential of AI-driven innovations for sustainable development.
Objectives: This research aimed to empirically examine the transformative impacts of Artificial Intelligence (AI) adoption on financial reporting quality in Jordanian banking, with internal controls as a hypothesized mediation mechanism. Methodology: Quantitative survey data was collected from 130 bank personnel. Multi-item reflective measures assessed AI adoption, internal controls, and financial reporting quality—structural equation modelling analysis relationships between constructs. Findings: The research tested four hypotheses grounded in agency and contingency theories. Confirmatory factor analysis demonstrated sound measurement models. Structural equation modelling revealed that AI adoption significantly transformed financial reporting quality. The mediating effect of internal controls on the AI-quality relationship was supported. Specifically, the path from AI adoption to quality was significant, indicating a positive impact. Despite internal controls strongly predicting quality, its mediating effect significantly shaped the degree of transformation driven by AI adoption. The indirect effect of AI on quality through internal controls was also significant. Findings imply a growing diffusion of AI applications in core financial reporting systems. Practical implications: Increasing AI applications focus on holistically transforming systems, reflecting committing adoption. Jordanian banks selectively leverage controls to moderate AI-induced transformations. Originality/value: This study provides essential real-world insights into how AI is adopted and impacts the Jordanian banking sector, a key player in a fast-evolving developing economy. By examining the role of internal controls, it deepens our understanding of how AI works in practice and offers practical advice for integrating technology effectively and improving information quality. Its mixed methods, unique context, and focus on AI’s impact on organizations significantly enrich academic literature. Recommendations: Banks should invest in integrated AI architectures, strategically strengthen critical controls to steer transformations, and incrementally translate AI innovations into core processes.
Artificial Intelligence (AI) has become a pivotal force in transforming the retail industry, particularly in the online shopping environment. This study investigates the impact of various AI applications—such as personalized recommendations, chatbots, predictive analytics, and social media engagement—on consumer buying behaviors. Employing a quantitative research design, data was collected from 760 respondents through a structured online survey. The snowball sampling technique facilitated the recruitment of participants, focusing on diverse demographics and their interactions with AI technologies in online retail. The findings reveal that AI-driven personalization significantly enhances consumer purchase intentions and satisfaction. Multiple regression analysis shows that AI personalization (β = 0.35, p < 0.001) has the most substantial impact on purchase intention, followed by chatbot effectiveness (β = 0.25, p < 0.001), predictive analytics (β = 0.20, p < 0.001), and social media engagement (β = 0.15, p < 0.01). Similarly, AI personalization (β = 0.30, p < 0.001), predictive analytics (β = 0.25, p < 0.001), and chatbot effectiveness (β = 0.20, p < 0.001) significantly influence consumer satisfaction. The hierarchical regression analysis underscores the importance of ethical considerations, showing that ethical and transparent use of AI increases consumer trust and engagement. Model 1 explains 45% of the variance in consumer behavior (R2 = 0.45, F = 154.75, p < 0.001), while Model 2, incorporating ethical concerns, explains an additional 10% (R2 = 0.55, F = 98.25, p < 0.001). This study highlights the necessity for retailers to leverage AI technologies ethically and effectively to gain a competitive edge, improve customer satisfaction, and drive long-term success. Future research should explore the long-term impacts of AI on consumer behavior and the integration of emerging technologies such as augmented reality and the Internet of Things (IoT) in retail.
Copyright © by EnPress Publisher. All rights reserved.