The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
In the history of public health, space has evolved through several stages driven by shifts in concepts of disease control. The history of public health is summarized by George Rosen in six phases: Origins (before 500 CE), Middle Ages (500–1500), Mercantilism and Absolutism (1500–1750), Enlightenment and Revolution (1750–1830), Industrialism and the Sanitary Movement (1830–1875), and the Bacteriological Era (1875–present). By integrating architectural sociology—a temporal lens examining the interplay between architecture, individuals, and society—this study investigates how architects historically responded to public health challenges, offering critical insights for contemporary healthy habitat design. Architecture not only addresses survival needs but also materializes societal consciousness. The progression of health-related cognition (e.g., germ theory), behavioural norms (e.g., hygiene practices), infrastructure systems (e.g., sanitation networks), and scientific advancements collectively redefined spatial paradigms. Architects constructed temples, thermae, lazarettos, Beitian Yangbingfang (charitable infirmaries), anatomical theaters, quarantine hospitals, tenements, mass housing, and biosafety laboratories. These cases exemplify the co-evolution of “Concept” (disease control ideologies), “Technology” (construction methods), and “Space” (built environments). By synthesizing centuries of public health spatial practices, this research deciphers the dynamic interplay among “Concept, Technology, and Space”. Leveraging historical patterns, we propose a predictive framework to refine future spatial strategies in anticipation of emerging health crises.
Copyright © by EnPress Publisher. All rights reserved.