Catastrophes, like earthquakes, bring sudden and severe damage, causing fatalities, injuries, and property loss. This often triggers a rapid increase in insurance claims. These claims can encompass various types, such as life insurance claims for deaths, health insurance claims for injuries, and general insurance claims for property damage. For insurers offering multiple types of coverage, this surge in claims can pose a risk of financial losses or bankruptcy. One option for insurers is to transfer some of these risks to reinsurance companies. Reinsurance companies will assess the potential losses due to a catastrophe event, then issue catastrophe reinsurance contracts to insurance companies. This study aims to construct a valuation model for catastrophe reinsurance contracts that can cover claim losses arising from two types of insurance products. Valuation in this study is done using the Fundamental Theorem of Asset Pricing, which is the expected present value of the number of claims that occur during the reinsurance coverage period. The number of catastrophe events during the reinsurance coverage period is assumed to follow a Poisson process. Each impact of a catastrophe event, such as the number of fatalities and injuries that cause claims, is represented as random variables, and modeled using Peaks Over Threshold (POT). This study uses Clayton, Gumbel, and Frank copulas to describe various dependence characteristics between random variables. The parameters of the POT model and copula are estimated using Inference Functions for Margins method. After estimating the model parameters, Monte Carlo simulations are performed to obtain numerical solutions for the expected value of catastrophe reinsurance based on the Fundamental Theorem of Asset Pricing. The expected reinsurance value based on Monte Carlo simulations using Indonesian earthquake data from 1979–2021 is Rp 10,296,819,838.
This study investigates seismic risk and potential impacts of future earthquakes in the Sunda Strait region, known for its susceptibility to significant seismic events due to the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The aim is to assess the likelihood of major earthquakes, estimate their impact, and propose strategies to mitigate associated risks. The research uses historical seismic data and probabilistic models to forecast earthquakes with magnitudes ranging from 6.0 to 8.2 Mw. The Gutenberg-Richter model helps project potential earthquake occurrences and their impacts. The findings suggest that the probability of a major earthquake could occur as early as 2026–2027, with a more significant event estimated to likely occur around 2031. Economic estimates for a 7.8–8.2 Mw earthquake suggest potential damage of up to USD 1.255 billion with significant loss of life. The study identifies key vulnerabilities, such as inadequate building foundations and ineffective disaster management infrastructure, which could worsen the impact of future seismic events. In conclusion, the research highlights the urgent need for comprehensive seismic risk mitigation strategies. Recommendations include reinforcing infrastructure to comply with seismic standards, implementing advanced early warning systems, and enhancing public education on earthquake preparedness. Additionally, government policies must address these issues by increasing funding for disaster management, enforcing building regulations, and incorporating traditional knowledge into construction practices. These measures are essential to reducing future earthquake impacts and improving community resilience.
This study examines the factors influencing e-government adoption in the Tangerang city government from 2010 to 2022. We gathered statistics from multiple sources to reduce joint source prejudice, resulting in a preliminary illustration of 1670 annotations from 333 regions or cities. These regions included major urban centers such as Jakarta, Surabaya, Bandung, Medan, Makassar, and Denpasar, as well as other significant municipalities across Indonesia. After removing anomalous values, we retained a final illustration of 1656 annotations. Results indicate that higher-quality digital infrastructure significantly boosts e-government adoption, underscoring the necessity for resilient digital platforms. Contrary to expectations, increased budget allocation for digital initiatives negatively correlates with adoption levels, suggesting the need for efficient spending policies. IT training for staff showed mixed results, highlighting the importance of identifying optimal training environments. The study also finds that policy adaptability and organizational complexity moderate the relationships between digital infrastructure, budget, IT training, and e-government adoption. These findings emphasize the importance of a holistic approach integrating technological, organizational, and policy aspects to enhance e-government implementation. The insights provided are valuable for policymakers and practitioners aiming to improve digital governance and service delivery. This study reveals the unexpected negative correlation between budget allocation and e-government adoption and introduces policy adaptability and organizational complexity as critical moderating factors, offering new insights for optimizing digital governance.
We present an interdisciplinary exploration of technostress in knowledge-intensive organizations, including both business and healthcare settings, and its impact on a healthy working life. Technostress, a contemporary form of stress induced by information and communication technology, is associated with reduced job satisfaction, diminished organizational commitment, and adverse patient care outcomes. This article aims to construct an innovative framework, called The Integrated Technostress Resilience Framework, designed to mitigate technostress and promote continuous learning within dynamic organizational contexts. In this perspective article we incorporate a socio-technical systems approach to emphasize the complex interplay between technological and social factors in organizational settings. The proposed framework is expected to provide valuable insights into the role of transparency in digital technology utilization, with the aim of mitigating technostress. Furthermore, it seeks to extend information systems theory, particularly the Technology Acceptance Model, by offering a more nuanced understanding of technology adoption and use. Our conclusion includes considerations for the design and implementation of information systems aimed at fostering resilience and adaptability in organizations undergoing rapid technological change.
Transit-oriented development is a concept that focuses on developing areas in and around transit nodes to create added value. The concept concentrates on integrating mass public transport networks with non-motorized modes of transport, minimizing the usage of motorized vehicles, and fostering the growth of dense, mixed-use areas with medium to high spatial intensity. This research examines the effects of altering the business model to create Transit Oriented Development (TOD) in Jakarta, contrasting it with PT Moda Raya Transports (PT MRT). We collected data by conducting in-depth interviews with experts and distributing questionnaires to seven respondents who work at this We used the Business Model Canvas (BMC) to identify business models and the internal resources needed for the implementation process. process. Therefore, six elements in BMC were used to conduct changes, and based on the results, RBV analysis was pe PT MRT needs to enhance its internal power to a competitive advantage level in order to effectively manage changes. We need to conduct further research on how the business model can influence the creation of transit-oriented development areas.
This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
Copyright © by EnPress Publisher. All rights reserved.