Imagining people’s functions in everyday life and work without the use of ICT, seems difficult. Their application is ubiquitous everywhere, regardless of which aspect it is viewed from, because it has a strong function in ensuring the competitiveness of various systems at the micro and macro levels. Numerous national and multinational strategies try to encourage educational systems to put a greater focus on ICT to more efficiently acquire skills, competencies, and knowledge, which should represent added value to all generations in the future. This article analyzes the progress of the ICT development index (IDI) in Scandinavian countries by comparing these countries in the European region. It is known that the Scandinavian countries belong to that part of the countries that have recognized the importance of involving ICT in education programs, which improves the economy of a certain country. Given this, the research reveals how ICTs play a key role in improving socio-economic development in Scandinavian countries.
This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
The purpose of this study was to assess rural students’ computational thinking abilities. The following proofs were observed: (1) Students’ abstraction affected algorithmic thinking skills; (2) Students’ decomposition influenced algorithmic thinking skills; (3) Students’ abstraction impacted evaluation skills; (4) Students’ algorithmic thinking affected evaluation skills; (5) Students’ abstraction impacted generalization skills; (6) Students’ decomposition impacted generalization skills; (7) Students’ evaluation affected generalization skills. Gender differences were observed in the relationship among the computational thinking factors of junior high school students. This included the abstraction-generalization skills; evaluation-generalization skills; and decomposition-generalization skills relationships, which were moderated by the gender of the students. 258 valid surveys were collected, and they were utilized in the study. Conducting the descriptive, reliability, and validity analyses used SPSS software, and the structural equation modeling (SEM) was also conducted through Smart PLS software to assess the hypothetical relationships. There were gender disparities in the correlation among computational thinking components of the junior high school students’ studying in rural areas. Research has shown that male and female students may have different abstractions, evaluations, and generalizations related to computational thinking, with females being more strongly associated than males in non-programming learning contexts. These results are expected to provide relevant information in subsequent analyses and implement a computational thinking curriculum to overcome the still-existing gender gaps and promote computational thinking skills.
Copyright © by EnPress Publisher. All rights reserved.