The heat collection evaporator was modeled based on equilibrium homogeneous theory, and the Runge-Kutta calculation method was used to analyze and solve the flow in the heat collection evaporator. The influence of environmental factors such as solar irradiance, ambient temperature and wind speed on the variation of refrigerant pressure in two kinds of heat collecting evaporator was analyzed under the set working conditions. The results show that the solar energy irradiance has a great influence on the pressure drop in the tube of serpentine heat collecting evaporator, and the maximum pressure drop of the refrigerant in the tube is 16.3%, minimum pressure drop is 7.8%. However, it has little influence on the pressure drop of the tube sheet evaporator. The maximum pressure drop in the refrigerant tube of the tube sheet evaporator is 4.8%, minimum pressure drop is 1.8%. When the irradiance reaches 800 W/m2, the refrigerant in the serpentine-tube evaporator has been completely vaporized at 6 m, it’s completely vaporized at 3 m.
The objective of the work was to evaluate and compare the physicochemical characteristics of an experimental cabotiá hybrid with the commercial hybrid Tetsukabuto. The genotypes were divided according to mass (kg), and were evaluated for quality. The color parameters evaluated showed no significant difference, although visually the hybrid was different from the commercial variety. It was possible to conclude that the size of the fruits does not influence the concentration of the compounds, and also, an inferiority of HC05 was observed with respect to the relevant quality characteristics in pumpkins, such as soluble solids content, carotenoids and vitamin C.
The purpose of this work is to present the model of a Parabolic Trough Solar Collector (PTC) using the Finite Element Method to predict the thermal behavior of the working fluid along the collector receiver tube. The thermal efficiency is estimated based on the governing equations involved in the heat transfer processes. To validate the model results, a thermal simulation of the fluid was performed using Solidworks software. The maximum error obtained from the comparison of the modeling with the simulation was 7.6% at a flow rate of 1 L/min. According to the results obtained from the statistical errors, the method can effectively predict the fluid temperature at high flow rates. The developed model can be useful as a design tool, in the optimization of the time spent in the simulations generated by the software and in the minimization of the manufacturing costs related to Parabolic Trough Solar Collectors.
Climate and vegetation are variables of the physical space that have a dynamic and interdependent relationship. Flora modifies climatic elements and gives rise to a microclimate whose characterization is a function of regional climatic conditions and vegetation structure. The objective of this work was to compare the climatic variations (inside and outside) of the Caldén Forest in the Parque Luro Provincial Reserve. Temperature, relative humidity, wind speed, wind direction and precipitation data from two meteorological stations for 2012 were analyzed and statistically compared. The influence of the forest on climatic parameters was demonstrated and it was found that the greatest variations were in wind speed, daily temperature and precipitation.
The US Infrastructure Investment and Job Act (IIJA), also commonly referred to as the Bipartisan Infrastructure Bill, passed in 2021, has drawn international attention. It aims to help to rebuild US infrastructure, including transportation networks, broadband, water, power and energy, environmental protection and public works projects. An estimated $1.2 trillion in total funding over ten years will be allocated. The Bipartisan Infrastructure Bill is the largest funding bill for US infrastructure in the recent history of the United States. This review article will specifically discuss funding allocations for roads and bridges, power and grids, broadband, water infrastructure, airports, environmental protection, ports, Western water infrastructure, electric vehicle charging stations and electric school buses in the new spending of the Infrastructure Investment and Job Act and why these investments are urgently necessary. This article will also briefly discuss the views of think tank experts, the public policy perspectives, the impact on domestic and global arenas of the new spending in the IIJA, and the public policy implications.
This work evaluates the physical and physical-chemical parameters of the strawberry variety “Festival”, obtained in the soil and climate conditions of Humpata, Huila Province, Angola, following the transformation into sweet of adequate quality. The analyses made were: the mass determined on an analytical balance and the transversal and longitudinal diameters with a pachymeter. Other analyses were: total titratable acidity by volumetry, pH by potentiometry, total soluble solids by refractometry, moisture and ash by gravimetry. The study showed that the pH of the pulp was 3.41; and in the candy it was 3.31. The titratable acidity in the strawberry pulp had a value of 0.186 g/100 mL and in the jam 0.096 g/100 mL; the ascorbic acid content in the pulp was 18.60 mg∕100 g. The average soluble solids content in the pulp was 9.51 °Brix and for the jam 68.83 °Brix. These chemical characteristics of the pulp and jam provide information about their nutritional values.
Copyright © by EnPress Publisher. All rights reserved.