Color visually communicates the product’s flavors to consumers and further influences their taste perception. This study explores the perceived taste of tea beverages caused by the logo’s principal colors, using hand-shaken tea beverages in Taiwan as an example. To identify the linkage between the logo color and tea tastes, this study divides the taste of tea beverages into four categories: sweetness, freshness, bitterness, and astringency. Then, the 69 tea beverage logos are allocated into the 14 color sections in the CIELAB color space according to their primary colors. The Correspondence Analysis method is employed to visualize the relationships between the logos and the perceived tastes. The tea tastes are then mapped into the color sections in the CIELAB color space. The analysis results reveal that the sweetness links to logos in the Warm Scheme colors (hue angle from 0 to 59 degrees). The fresh taste is bound with the logo with the Cool White Scheme colors (hue angle from 90 to 149 degrees and brightness >80). Finally, the bitter and astringent tastes link to the logo colors in the Cold Black Scheme colors (hue angle from 60 to 89 degrees, 150 to 329 degrees, and brightness <25). This study expands the color and taste association literature from general food to tea beverages. Our obtained empirical results can be applied to hand-shaken beverage companies to select principal colors for designing logos and packages that align with tea beverages’ perceived tastes to convey brand recognition accurately.
This article measures the performance of listed commercial banks in Vietnam and identifies factors influencing their efficiency. The study follows a two-stage approach: (i) In the first stage, scale efficiency scores from 2016 to 2022 are assessed using the Data Envelopment Analysis (DEA) method; (ii) In the second stage, Tobit regression analyzes internal factors, macroeconomic conditions, and the impact of Covid-19. Key findings show that internal factors such as return on assets positively affect efficiency, while the ratio of equity to total capital has a negative and statistically significant impact. Bank size positively influences efficiency scores. Macroeconomic factors, including economic growth and inflation, were statistically insignificant. However, the Covid-19 pandemic had a significant negative effect on bank efficiency.
Educational quality policies are a basic principle that every Peruvian university educational institution pursues in accordance with Law No. 30220, with the objective of training highly competent professionals who contribute to the development of the country. This study to analyzes educational quality policies with the student’s satisfaction of public and private universities in Peru, according to social variables. The study was descriptive-comparative, quantitative, non-experimental, and cross-sectional. One thousand (1000) students from two Peruvian universities, one public (n = 500) and one private (n = 500), were purposively selected by quota using the SERVQUALing instrument. The findings indicate a moderate level of satisfaction reported by 49.2% of participants, with a notable tendency towards high satisfaction observed in 40.9% of respondents. These results suggest that most students perceive that the actual state of service quality policies are in a developmental stage. The results, therefore, indicate that regulatory measures, including university laws, licensing, and accreditation, significantly influence outcomes. These measures are essential for the effective functioning of universities. In addition, the analysis revealed that female and male students at private universities showed higher levels of satisfaction with the educational services offered. It is concluded that educational quality policies in Peru are still being executed, because the implementation of the University Law is in process, according to the satisfaction of the student, this must be improved in central aspects such as optimizing human resources, infrastructure, equipment, curricular plans that differ from the public to the private university, In addition, this should lead to improving and redefining current policies on educational quality and the economic policies that finance the educational service.
One of the most frequently debated subjects in international forums is economic growth, which is regarded as a global priority. Consequently, researchers have turned their attention from conventional economic growth at a single average coefficient to divisible economic growth at levels of its value. Although the existing literature has discussed several determinants of economic growth, our article contributes to examining the sources of economic growth in African countries during the generations of reforms from 1990 to 2019 and in the context of economic vulnerability. The variables used in the analysis are gross domestic product, trade openness, financial development, and economic vulnerability. The study uses a quantile regression econometric model to examine these variables at different stages of reform. Quantile regression (QR) estimates for quantiles 0.05 to 0.95 showed mixed results: financial development is favorable to African economic growth at all quantile levels. However, economic vulnerability is a major impediment to economic growth at all quantile levels. In addition, it was found that a high degree of trade openness has a detrimental effect on African economic growth from quantile 0.5 of the dependent variable. Finally, another important result proves that financial development is a remedy for decision-makers against economic vulnerability.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
While the notion of the smart city has grown in popularity, the backlash against smart urban infrastructure in the context of changing state-public relations has seldom been examined. This article draws on the case of Hong Kong’s smart lampposts to analyse the emergence of networked dissent against smart urban infrastructure during a period of unrest. Deriving insights from critical data studies, dissentworks theory, and relevant work on networked activism, the article illustrates how a smart urban infrastructure was turned into both a source and a target of popular dissent through digital mediation and politicisation. Drawing on an interpretive analysis of qualitative data collected from multiple digital platforms, the analysis explicates the citizen curation of socio-technic counter-imaginaries that constituted a consent of dissent in the digital realm, and the creation and diffusion of networked action repertoires in response to a changing political opportunity structure. In addition to explicating the words and deeds employed in this networked dissent, this article also discusses the technopolitical repercussions of this dissent for the city’s later attempts at data-based urban governance, which have unfolded at the intersections of urban techno-politics and local contentious politics. Moving beyond the common focus on neoliberal governmentality and its limits, this article reveals the underexplored pitfalls of smart urban infrastructure vis-à-vis the shifting socio-political landscape of Hong Kong, particularly in the digital age.
Copyright © by EnPress Publisher. All rights reserved.