To achieve sustainable development, detailed planning, control and management of land cover changes that occur naturally or by human caused artificial factors, are essential. Urban managers and planners need a tool that represents them the information accurate, fast and in exact time. In this study, land use changes of 3 periods, 1994-2002, 2002-2009, 2009-2015 and predictions of 2009, 2015 and 2023 were assessed. In this paper, Maximum Likelihood method was used to classify the images, so that after evaluation of accuracy, amount of overall accuracy for images of 2013 was 85.55% and its Kappa coefficient was 80.03%. To predict land use changes, Markov-CA model was used after assessing the accuracy, and the amount of overall accuracy for 2009 was 82.57% and for 2015 was 93.865%. Then web GIS application was designed via map server application and evoked shape files through map file and open layers to browser environment and for design of appearance of website CSS, HTML and JavaScript languages were used. HTML is responsible for creating the foundation and overall structure of webpage but beautifying and layout design on CSS.
In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.
The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam. The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.
With the continuous development of facilities and horticulture, the area of vegetable planting in facilities increased year by year. Watermelon (Citrullus vulgaris Schrad) as the main cultivars within the facility, the continuous cropping problem is very serious, resulting in continuous cropping obstacles become increasingly obvious, the incidence of fusarium wilt increased year by year. Grafted watermelon roots developed to improve the growth of grafted roots of the conditions, resulting in robust plant growth. At the same time, the use of different purposes of the rootstock can make watermelon in different soil conditions under normal growth, such as the use of low temperature, drought, salt tolerance, barren and other characteristics of the rootstock. Secondly, the rootstock of the strong absorption of water absorption capacity, to promote the growth of grafted watermelon plants strong, large watermelon fruit, high yields. In addition, grafted watermelon seedlings grow fast early, for early maturing cultivation and overcome the seedless watermelon early growth slow defects is extremely favorable. So the use of pumpkin as a watermelon grafting rootstock, can effectively improve the effect of watermelon resistance to Fusarium wilts. And provide the theoretical basis and scientific basis for the further study of photosynthetic characteristics, disease resistance breeding and effective control of watermelon. In this experiment, the watermelon varieties with different resistance to fusarium wilt were selected, and the anti-fusarium wilt watermelon was studied systematically. There are changes in physiological characteristics during growth and development. In conclusion, grafting promotes the growth of watermelon and physiological characteristics of the index rose.
KEYWORDS: watermelon; fusarium wilt; growth period; physiological characteristics
The nylon 66/nano-CaCO3 composites were prepared by melt blending on a twin-screw extruder. Scanning electron microscopy (SEM), polarized light microscopy (PLM), thermal loss (TGA) and differential scanning calorimetry (DSC) The effects of nanometer calcium carbonate on the polycrystalline behavior and thermal properties of nylon 66/nano CaCO3 composites were investigated. The results show that the nanometer calcium carbonate particles are dispersed in the nylon 66 matrix and exist in the form of aggregates. The nanometer calcium carbonate has the effect of heterogeneous nucleation, which can reduce the size of the spherules. The decomposition temperature of the nylon 66 is 400 ℃, the addition of nano-CaCO3 to reduce the decomposition temperature. At the same time, DSC test showed that the β-crystalline form in the material reduced the melting temperature of the material. The addition of nano-CaCO3 in the nylon 66 matrix resulted in the decrease of the crystallization temperature and the increase of the half-height width of the endothermic peak. The lower the crystallization temperature, the wider the crystallization temperature range.
Using matricant method elastic moduli of occasionally heterogeneous isotropic and anisotropic elastic media were received. Anisotropic behaviour and conditions for change in anisotropy of media associated with averaging of one-dimensional periodic structures was determined.
Copyright © by EnPress Publisher. All rights reserved.