Since the proposal of the low-carbon economy plan, all countries have deeply realized that the economic model of high energy and high emission poses a threat to human life. Therefore, in order to enable the economy to have a longer-term development and comply with international low-carbon policies, enterprises need to speed up the transformation from a high-carbon to a low-carbon economy. Unfortunately, due to the massive volume of data, developing a low-carbon economic enterprise management model might be challenging, and there is no way to get more precise forecast data. This study tackles the challenge of developing a low-carbon enterprise management mode based on the grey digital paradigm, with the aim of finding solutions to these issues. This paper adopts the method of grey digital model, analyzes the strategy of the enterprise to build the model, and makes a comparative experiment on the accuracy and performance of the model in this paper. The results show that the values of MAPE, MSE and MAE of the model in this paper are the lowest. And the r^2 of the model in this paper is also the highest. The MAPE value of the model in this paper is 0.275, the MSE is 0.001, and the MAE is 0.003. These three indicators are much lower than other models, indicating that the model has high prediction accuracy. r2 is 0.9997, which is much higher than other models, indicating that the performance of this model is superior. With the support of this model, the efficiency of building an enterprise model has been effectively improved. As a result, developing an enterprise management model for the low-carbon economy based on the gray numerical model can offer businesses new perspectives into how to quicken the shift to the low-carbon economy.
The effectiveness and efficiency of e-learning system in industry significantly depend on users’ acceptance and adoption. This is specifically determined by external and internal factors represented by subjective norms (SN) and experience (XP), both believed to affect users’ perceived usefulness (PU) and perceived ease of use (PEOU). Users’ acceptance of e-learning system is influenced by the immensity of region, often hampered by inadequate infrastructure support. Therefore, this study aimed to investigate behavioral intention to use e-learning in the Indonesian insurance industry by applying Technology Acceptance Model (TAM). To achieve this objective, Jabotabek and Non-Jabotabek regions were used as moderating variables in all related hypotheses. An online survey was conducted to obtain data from 800 respondents who were Indonesian insurance industry employees. Subsequently, Structural Equation Model (SEM) was used to evaluate the hypotheses, and Multi-Group Analysis (MGA) to examine the role of region. The results showed that out of the seven hypotheses tested, only one was rejected. Furthermore, XP had no significant effect on PU, and the most significant correlation was found between PEOU and PU. In each relationship path model, the role of region (Jabodetabek and Non Jabodetabek) had no significant differences. These results were expected to provide valuable insights into the components of e-learning acceptability for the development of a user-friendly system in the insurance industry.
The fifth-generation technology standard (5G) is the cellular technology standard of this decade and its adoption leaves room for research and disclosure of new insights. 5G demands specific skillsets for the workforce to cope with its unprecedented use cases. The rapid progress of technology in various industries necessitates a constant effort from workers to acquire the latest skills demanded by the tech sector. The successful implementation of 5G hinges on the presence of competent individuals who can propel its progress. Most of the existing works related to 5G explore this technology from a multitude of applied and industrial viewpoints, but very few of them take a rigorous look at the 5G competencies associated with talent development. A competency model will help shape the required educational and training activities for preparing the 5G workforce, thereby improving workforce planning and performance in industrial settings. This study has opted to utilize the Fuzzy Delphi Method (FDM) to investigate and evaluate the perspectives of a group of experts, with the aim of proposing a 5G competency model. Based on the findings of this study, a model consisting of 46 elements under three categories is presented for utilization by any contingent of 5G. This competency model identifies, assesses, and introduces the necessary competencies, knowledge, and attributes for effective performance in a 5G-related job role in an industrial environment, guiding hiring, training, and development. Companies and academic institutions may utilize the suggested competency model in the real world to create job descriptions for 5G positions and to develop curriculum based on competencies. Such a model can be extended beyond the scope of 5G and lay the foundation of future wireless cellular network competency models, such as 6G competency models, by being refined and revised.
In the fast-paced modern society, enhancing employees’ professional qualities through training has become crucial for enterprise development. However, training satisfaction remains under-studied, particularly in specialized sectors such as the coal industry. Purpose: This study aims to investigate the impact of personal characteristics, organizational characteristics, and training design on training satisfaction, utilizing Baldwin and Ford’s transfer of training model as the theoretical framework. The study identifies how these factors influence training satisfaction and provides actionable insights for improving training effectiveness in China’s coal industry. Design/Methodology/Approach: A cross-sectional design that allowed the study to capture data at one point in time from a large sample of employees was employed to conduct an online survey involving 251 employees from the Huaibei Mining Group in Anhui Province, China. The survey was administered over three months, capturing a diverse sample with nearly equal gender distribution (51% male, 49% female) and a majority aged between 21 and 40. The participants represented various educational backgrounds, with 52.19% holding an undergraduate degree and most occupying entry-level positions (74.9%), providing a broad workforce representation. Findings: The research indicated that personal traits were the chief predictor of training satisfaction, showing a beta coefficient of 0.585 (95% CI: [0.423, 0.747]). Linear regression modeling indicates that training satisfaction is strongly related to organizational attributes (β = 0.276 with a confidence interval of 95% [0.109, 0.443]). In contrast, training design did not appear to be a strong predictor (β = 0.094, 95% CI: [−0.012, 0.200]). Employee training satisfaction was the principal outcome measure, measured with a 5-point Likert scale. The independent variables covered personal characteristics, organizational characteristics, and training design, all measured through validated items taken from former research. The consistency of the questionnaire from the inside was strong, as Cronbach’s alpha values stood between 0.891 and 0.936. We completed statistical testing using SPSS 27.0, complemented by multiple linear regression, to study the interactions between the variables. Practical implications: This research contributes to the literature by emphasizing the necessity for context-specific training approaches within the coal industry. It highlights the importance of considering personal and organizational characteristics when designing training programs to enhance employee satisfaction. The study suggests further exploration of the multifaceted factors influencing training satisfaction, reinforcing the relevance of Baldwin and Ford’s theoretical model in understanding training effectiveness. Ultimately, the findings provide valuable insights for organizations seeking to improve training outcomes and foster a more engaged workforce. Conclusion: The study concluded that personal and organizational characteristics significantly impact employee training satisfaction in the coal industry, with personal characteristics being the strongest predictor. The beta coefficient for personal characteristics was 0.585, indicating a strong positive relationship. Organizational characteristics also had a positive effect, with a beta coefficient of 0.276. However, training design did not show a significant impact on training satisfaction. These findings highlight the need for coal companies to focus on personal and organizational factors when designing training programs to enhance satisfaction and improve training outcomes.
This study investigates seismic risk and potential impacts of future earthquakes in the Sunda Strait region, known for its susceptibility to significant seismic events due to the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The aim is to assess the likelihood of major earthquakes, estimate their impact, and propose strategies to mitigate associated risks. The research uses historical seismic data and probabilistic models to forecast earthquakes with magnitudes ranging from 6.0 to 8.2 Mw. The Gutenberg-Richter model helps project potential earthquake occurrences and their impacts. The findings suggest that the probability of a major earthquake could occur as early as 2026–2027, with a more significant event estimated to likely occur around 2031. Economic estimates for a 7.8–8.2 Mw earthquake suggest potential damage of up to USD 1.255 billion with significant loss of life. The study identifies key vulnerabilities, such as inadequate building foundations and ineffective disaster management infrastructure, which could worsen the impact of future seismic events. In conclusion, the research highlights the urgent need for comprehensive seismic risk mitigation strategies. Recommendations include reinforcing infrastructure to comply with seismic standards, implementing advanced early warning systems, and enhancing public education on earthquake preparedness. Additionally, government policies must address these issues by increasing funding for disaster management, enforcing building regulations, and incorporating traditional knowledge into construction practices. These measures are essential to reducing future earthquake impacts and improving community resilience.
Copyright © by EnPress Publisher. All rights reserved.