A smart city focuses on enhancing and interconnecting facilities and services through digital technology to offer convenient services for both people and businesses. The basic infrastructure of smart cities consists of modern technologies such as the Internet of Things (IoT), cloud computing and artificial intelligence. These urban areas utilize different networks, such as the Internet and IoT, to share real-time information, improving convenience for the inhabitants. However, the reliance of smart cities on modern technologies exposes them to a range of organized, diverse, and sophisticated cyber threats. Therefore, prioritizing cybersecurity awareness and implementing appropriate measures and solutions are essential to protect the privacy and security of citizens. This study aims to identify cyber threats and their impact on smart cities, as well as the methods and measures required for key areas such as smart government, smart healthcare, smart mobility, smart environment, smart economy, smart living, and smart people. Furthermore, this study seeks to evaluate previous research in this field, establish necessary policies to mitigate these threats, and propose an appropriate model for the infrastructure associated with IT networks in smart cities.
The creation of points where law, politics and education policies take intersection is a very complex and dynamic environment determined by philosophical shifts, economic problems, and social dynamics. This study dissects various complicated challenges facing the process of the framing of educational policies and their implementation which have become rampant due to the rapid political transformations. The researched evaluation is applied via both qualitative and quantitative methods, including juridical research, case and best practices studies and surveys, with the descriptive nature of the research as the main tool. The heart of the essay is three main themes - the contention between the rigidity of the academic standards and the holistic growth of students, its possible effects when students are too identified with a test-centric approach as their knowledge is sacrificed for their test scores, and the inclusion of rights and protections for underrepresented populations even when faced with a government’s resistance. Similarly, the research examines the perils of creating legislation too quickly, especially, because of unexpected side effects and interpretation conflicts. Findings show profound demographic differentials over districts which implies the designing and implementation of policies need to be modified accordingly. Unless a certain policy brings the best outcomes in the learning process, then nobody should choose it even if it means disrupting student well-being and decreasing their involvement. It is also emblematic of how cross-party cooperation and stakeholders’ understanding are important aspects of fairly dealing with complicated policy environments.
Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
Real estate appraisal standards provide guidelines for the preparation of reliable valuations. These standards emphasize the central role of market data collection in market-oriented valuation methodologies such as the Market Comparison Approach (MCA), which is the most commonly used. The objective of this study is to highlight the difficulties in data finding, as well as the gap between the standards and the actual appraisal practices in Italy. Thus, a detailed comparison was made between the real estate data considered necessary by the standards and those ones reasonably detectable by appraisers, showing that some important market information is not reachable due to legal, technical and economic factors. Finally, a case study is presented in which the actual appraisal of a residential property is schematically described to support what is claimed with the research question and thus the degree of uncertainty around an estimate judgment.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
Copyright © by EnPress Publisher. All rights reserved.