Access to affordable and quality medicines plays a vital role for achieving Universal Health Coverage and in reducing out-of-pocket expenditures (OOPE) for households especially in developing nations such as India. Pradhan Mantri Bhartiya Janaushadhi Pariyojana (PMBJP), a Government of India initiative, aims to make low-cost and quality generic drugs and surgical equipment accessible to all segments of the population through its dedicated store outlets known as Pradhan Mantri Bhartiya Janaushadhi Kendra (PMBJK). In this study, a pilot survey comprising 20 stores/PMBJKs and 150 citizens was undertaken in the Bengaluru Urban District, India to understand various aspects of the PMBJKs including availability of drugs, stock-outs, accessibility to stores, perception and awareness levels along with challenges faced by store owners and citizens/beneficiaries. Based on the survey results, we capture the availability of drugs for 35 medicines and consumables belonging to 12 therapeutic categories across 20 store outlets. We also provide valuable insights and interdisciplinary recommendations on several facets including adopting technology-based measures for day-to-day functioning of stores, need for in-depth supply chain analysis for ensuring availability of drugs, encouraging prescription of generic medicines, increasing awareness levels in addition to promoting grassroot-level research, surveys and feedback mechanisms. These suggestions are expected to find their utility in policy-making, strengthen the implementation of the PMBJP scheme across Bengaluru and India as well as contribute towards achieving related Sustainable Development Goals.
The recession cone and recession function are very important research objects in Convex Analysis. They have extensive applications in the optimization theory. Firstly, we study the properties of the recession cone and recession function. The positive homogeneity and subadditivity of recession function are mainly discussed. And the different methods are considered to prove these properties. Secondly, we discuss the unboundedness of the convex sets and convex functions by using recession cone and recession function.
Atomic interaction between mediator protein of human prostate cancer (PHPC) and Fe/C720 Buckyballs-Statin is important for medical science. For the first time, we use molecular dynamics (MD) approach based on Newton’s formalism to describe the destruction of PHPC via Fe/C720 Buckyballs-Statin with atomic accuracy. In this work, the atomic interaction of PHPC and Fe/C720 Buckyballs-Statin introduced via equilibrium molecular dynamics approach. In this method, each PHPC and Fe/C720 Buckyballs-Statin is defined by C, H, Cl, N, O, P, S, and Fe elements and contrived by universal force field (UFF) and DREIDING force-field to introduce their time evolution. The results of our studies regarding the dynamical behavior of these atom-base compounds have been reported by calculating the Potential energy, center of mass (COM) position, diffusion ratio and volume of defined systems. The estimated values for these quantities show the attraction force between Buckyball-based structure and protein sample, which COM distance of these samples changes from 10.27 Å to 2.96 Å after 10 ns. Physically, these interactions causing the destruction of the PHPC. Numerically, the volume of this biostructure enlarged from 665,276 Å3 to 737,143 Å3 by MD time passing. This finding reported for the first time which can be considered by the pharmaceutical industry. Simulations indicated the volume of the PHPC increases by Fe/C720 Buckyballs-Statin diffusion into this compound. By enlarging this quantity (diffusion coefficient), the atomic stability of PHPC decreases and protein destruction procedure fulfilled.
An experiment was conducted to assess the effect of psychoenergetic energy in litchi as positive and negative thoughts using a simple meditation technique at ICAR-NRC on Litchi, Muzaffarpur. The plant produced 24.75 g of fruit given positive energy, while the plant with negative thought energy produced 22.12 g of fruit. The fruit and seed weight increased by 11.88% and 13.63%, respectively, due to positive energy. The number of fruit retentions increased by 23.77% due to positive energy. Anthocyanin content in pericarp was increased by 5.45% in plants given positive energy. Fruit qualities were also significantly affected by psychoenergy. TSS (Brix) was significantly increased by 13.54% in plants given positive energy as compared to negative energy, and titratable acidity was reduced by 25% due to positive energy. Ascorbic acid was also increased by 30% in plant given positive thoughts. Sun burn was reduced by 54.76% and fruit cracking by 63.64% due to energy of thought. Fruit borer infestation was reduced by 70%, and mite infestation was reduced by 90% in plants given positive energy. The psychoenergetic potential is vast, and its ability to improve crop yield and quality cannot be overstated. The hidden power of thought is being practiced by all, but mostly people do not know this power and use it in an improper manner. This is a high time when we need to practice generating powerful thoughts to change present-day agriculture and its dependents.
Proposed herein is an environment-friendly method to realize oil/water separation. Nylon mesh is exposed to atmospheric pressure plasma for surface modification, by which micro/nano structures and oxygen-containing groups are created on nylon fibers. Consequently, the functionalized mesh possesses superhydrophilicity in air and thus superoleophobicity underwater. The water pre-wetted mesh is then used to separate oil/water mixtures with the separation efficiency above 97.5% for various oil/water mixtures. Results also demonstrate that the functionalized nylon mesh has excellent recyclability and durability in terms of oil/water separation. Additionally, polyurethane sponge slice and polyester fabric are also functionalized and employed to separate oil/water mixtures efficiently, demonstrating the wide suitability of this method. This simple, green and highly efficient method overcomes a nontrivial hurdle for environmentally-safe separation of oil/water mixtures, and offers insights into the design of advanced materials for practical oil/water separation.
Heat transfer enhancement (HTE) is a topic of everlasting importance in thermal engineering research. The latest focuses in this field are on nanosolutions for more efficient thermal transmission fluids (a) and designs of metallic foams (b) Metallic foams provide extended surfaces for HTE and possess advantages such as a high value of Cp, high thermal conductivity (TC) and being light weight. nanosolutions, on the other hand, can be used as an efficient HT medium as they exhibit higher TCs in comparison to base fluids. This review paper summarizes the physical properties of nanosolutions and or within the metal foam, focusing on HT and flow properties of nanosolutions, metal foam and combined NS-metal foam systems. The inspiration novelty for this review is the basic transference identifications for the HT enhancement of nanosolutions in porous media. The aim of the work is to provide insight on how nanosolutions in conjunction with porous media can be useful for HTE.
Copyright © by EnPress Publisher. All rights reserved.