Cases of human trafficking are becoming more prevalent and represent grave abuses of human rights. Both locally and internationally, victims of human trafficking run the danger of being exploited, violent, or infected with contagious illnesses. The Indonesian government has not fully complied with the minimal criteria for safeguarding victims of human trafficking, notwithstanding Law Number 21 of 2007 for the Eradication of the Crime of Human Trafficking. Human rights restoration and respect for victims of human trafficking must be given priority in the implementation of legal protection for these individuals. To strengthen and increase the security of victims’ rights in the future, this study intends to conduct a thorough analysis of the humanism approach model and policies for safeguarding victims of human trafficking. This research uses an empirical technique to support its normative legal analysis. Primary and secondary legal sources are used in this research. The study’s findings show that the protection provided by humanist criminal law for victims of human trafficking is founded on humanitarian principles that derive from the divine principles found in the Pancasila ideology. There are additional requirements for punishment, such as its purpose, its ability to serve as therapy, and its determination to reflect the victim’s and society’s sense of justice. This criminal law is founded on the principles of legality and balance.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
This article evaluates the Didactic Strategies for Teaching Mathematics (DSTM) program, designed to enhance the teaching of mathematical content in primary and secondary education in a hybrid modality. In alignment with SENACYT’s Gender-STEM-2040 Policy, which emphasizes gender equality as a foundational principle of education, this study aims to assess whether initial teacher training aligns with this policy through the use of mathematical strategies promoting gender equality. A descriptive-correlational approach was applied to a sample of 64 educators, selected based on their responses during the training, with the goal of improving teaching and data collection methodologies. Findings indicate that, although most teachers actively engage in training, an androcentric approach persists, with sexist language and a curriculum that renders girls invisible, hindering the fulfillment of the National Gender Equality Policy in Science, Technology, and Innovation of Panama (Gender-STEM Policy 2040). Additionally, through a serendipitous finding, a significant gap in student activity levels, especially in secondary school, was discovered. While in primary school, activity levels were similar between genders, a decline in active participation among girls in secondary school was observed. This discovery, not initially contemplated in the study’s objectives, provides valuable insights into gender differences in active participation, particularly in higher educational stages. The serendipity suggests the need for further exploration of social, environmental, and family factors that may influence this decrease in girls’ active participation. The article concludes with a preliminary diagnosis and a call to deepen gender equality training and the effective implementation of coeducation in Panama’s educational system.
Since 1999, China’s higher education has experienced significant growth, with the government dramatically increasing college enrollment rates, thereby enhancing the overall quality of education. However, most existing studies have primarily focused on the quantity of education, with little attention having been given to the impact of higher education quality (HEQ) on economic growth. This study aims to explore how higher education quality (HEQ) contributes to regional economic growth through scientific and technological innovation (STI) and human capital accumulation. Using panel data from 31 Chinese provinces from the period 1999 to 2022, panel regression models and instrumental variable methods were employed to analyze both the direct and indirect impacts of higher education quality (HEQ) on economic growth. The results confirm that improving higher education quality (HEQ) is crucial for sustaining China’s economic growth. More specifically, higher education promotes regional economic expansion both directly, by enhancing labor productivity, and indirectly, by facilitating scientific and technological innovation. Furthermore, the study suggests that the balanced distribution of educational resources across regions should be prioritized to support coordinated regional development. This research provides insights for policymakers on how balanced regional economic development can be achieved through educational and technological policies. This work also lays a foundation for future studies.
This research study aims 1) to create a structural equation model for sports sponsorship of halal products in Thailand and 2) to examine the direct and indirect influence of variables that are components of the structural equation model for halal products, specifically in the context of becoming a sports sponsorship for halal products in Thailand. The study focused on a sample group of Thai Muslims interested in watching and following the news and participating in Thai sporting events. The researcher chose a sample size of 400 participants from this population, excluding backup data gathering and data analysis, to ensure the questionnaire’s quality and dependability. The results of the data analysis from the structural equation model created show that it is consistent with empirical data. The results of the statistical hypothesis test reveal that the level of religious adherence and the level of awareness of entering into sponsorship have both direct and indirect influences on consumer attitudes and purchase intentions with statistical significance at 0.01. It can also be identified that if a sponsor increases awareness among Muslim viewers through branding or product presentations in events that feature halal symbols or indicate compliance with religious standards, it will lead to a more positive attitude and higher purchase intentions. This insight can be applied to marketing promotion in administrative regions or countries where the majority of the population is Muslim.
All sectors have an increasing interest in smart phone applications based on their many advantages that support business, especially the medical sector, which is constantly competing to develop the medical services provided, and accordingly in this research study we industrialized a mobile medical supplies and equipment ordering application (mobile medical app) classic and make an effort to authenticate it factually. When clients (hospitals doctors) create consumptions on the application, three dimensions can be identified: platform emotion stage, fear effect, and familiarity with product. This research designed to reinforce and brighten the most important magnitudes that improve a physician’s judgment of mobile medical app and the purpose to usage. Furthermore, this study inspected the availability of the model between hospital physicians in UAE. The classic ideal was observed by means of a model of 340 UAE clinic physicians and their personal assistant who utilize mobiles facilities in overall. The review technique, a calculable method, was applied; the fractional smallest cubes organizational calculation exhibiting systems was owned to inspect the planned agenda. The platform emotion dimension, especially fear and resistance to change, and the familiarity with the products were evaluated, and it was discovered that these factors positively influenced the objective to use the application. And the other side, the first dimension of emotion, fear, manifested as “apparent threat”, had no outcome on the purpose to using. These discoveries recommended that scholars should emphasis more on the facilities, merchandises, and the key task of the mobile medical app to control their inspirations on clients’ ordering purpose. This will progress the purchasing ways associated to acquiring medicinal materials utilizing mobile medical app and/or on other operational stages in unambiguously in UAE and the Central East at great.
Copyright © by EnPress Publisher. All rights reserved.