Purpose: This study aims to identify the primary determinants of consumer behavior influencing customer satisfaction in the context of online mobile application (App) purchases of perishable products. Utilizing the well-established SERVQUAL (Service Quality) model, which has been extensively studied in various service-oriented settings, the research seeks to determine the factors with the greatest impact on customer satisfaction during online transactions of perishable products. Design: The investigation focuses on analyzing the five core dimensions of the SERVQUAL model: tangibles, reliability, responsiveness, assurance, and empathy. The study employs a survey methodology administered through Google Forms, targeting the population residing in the Klang Valley of Malaysia. A total of 400 samples were successfully collected using a snowball sampling technique. Methodology: The study employs the SERVQUAL model as the theoretical framework to examine the dimensions of tangibles, reliability, responsiveness, assurance, and empathy. The survey, conducted through Google Forms, targeted the population in the Klang Valley of Malaysia, with a sample size of 400 collected through snowball sampling. Findings: The study’s outcomes reveal the robust predictive capability of the overarching SERVQUAL model in the realm of online perishable product procurement. Notably, the assurance dimension emerges as the most influential factor, emphasizing its pivotal role in shaping and defining customer satisfaction for online retailers of perishable goods in the Malaysian market. Novelty: This research contributes to the understanding of consumer behavior in online perishable product purchases, by identifying determinants of consumer behavior; the study promotes sustainable production and responsible consumption within the perishable products category, offering insights beneficial for online retailers in the Malaysian market. This study aligns with United Nations sustainable development goals especially industry innovation, food security and responsible consumption.
Leadership is one of the important factors that ensured organizational achievement. Servant leadership offers a unique point of view on leadership which developed around the idea of service to subordinates. The implementation of servant leadership can lead to various positive outcomes, including increased engagement, organizational citizenship behavior, and improved performance. However, engagement and organizational citizenship behavior can serve as mediators to enhance organizational performance even further. The present study aimed to explore a prediction model of servant leadership using mediating variables such as employee engagement and organizational citizenship behavior, with employee performance as the outcome. The sampling method used was purposive sampling. This study used a structural equation model analysis approach to determine the predicted model of servant leadership. The research showed that the role of mediating variables indicated that employee engagement and organizational citizenship behavior had a positive effect in mediating the relationship between servant leadership and employee performance. The study indicated that applying servant leadership, with employee engagement, and organizational citizenship behavior as mediating variables would have an impact on better results of employee performance.
The aim of the research is to elucidate the features of the modern model of bioecomedicine and its components as a social determinant of sustainable societal development. The theoretical-methodological basis of the work was the complex use of scientific principles and a systematic approach, which determined the choice of research methods: general scientific and interdisciplinary. The concept generalized content is substantiated and the main lines of building the bioecomedicine model are characterized from the standpoint of information-structural modeling and sustainable development. Based on the structural-logical imperative, the object, subject, basic method and main concepts of this science sphere are characterized. The bioecomedicine principal idea as a social determinant of the sustainable development within a single information space is the unification of the knowledge information field of biology, ecology and medicine based on the use of the latest achievements in information technologies. It is proven that the algorithm for achieving the bioecomedicine global goal in the form of a set of principles reflects the essence of a systemic approach to solving the tasks of sustainable societal development by ensuring the system-environmental homeostasis of humans and the ecosystems that surround them.
Despite many investigations concerning antecedents of organizational commitment in the workplace, very few studies so far have analyzed the direct or indirect impact of HR change leadership role on organizational commitment via HR attribution. Therefore, given the reciprocal principle of social exchange theory, attribution theory and signal theory, this study formulated hypotheses and a model to test the relationships between included variables by employing the mixed-method approach. In-depth interviews were initially conducted to develop questionnaires to collect quantitative data. Employing PLS-SEM to analyze the data collected from 1058 employees working in 24 sustainable enterprises in Vietnam, the findings show that the degree of adopting HR change leadership role was positive, directly affecting organizational commitment. Also, both well-being and performance HR attribution play partially mediated roles in the relationship. The findings suggest that the organizational commitment depends on not only how the degree of adopting HR change leadership role is executed, but also how employees perceive and interpret the underlying management intent of these practices. In a sustainable context, adopting HR change leadership role plays a critical role in shaping employees’ interpretations of sustainable HR practices and their subsequent attributions. Besides, employees’ belief on why are sustainable HRM practices implemented has an influence on the organizational commitment that in turn contributes to the overall sustainable performance.
This study aims to explain the design of policy strengthening in forest and land fire disaster mitigation governance, through the integration of ecotourism development in Siak Regency. Based on the research topic, this study employs a qualitative approach to describe governance conditions and the design of policy strengthening in ecotourism-based disaster mitigation governance. Data analysis is performed using Nvivo 12 Plus software. The results of this study indicate that forest and land fire disaster mitigation governance based on ecotourism development still has shortcomings that need to be addressed in the principles of conservation, economy, and community involvement. Then, the design of a policy to strengthen ecotourism-based disaster mitigation governance includes three crucial policy recommendations, namely: the need for special regulations related to forest and land fire disaster mitigation prevention based on the integration of ecotourism principle development, the need for a balance of roles between actors in determining and implementing ecotourism-based disaster mitigation policies, and the need for effective and efficient implementation of ecotourism-based disaster mitigation policies through increasing the involvement of strategic actors. Substantially, the handling of forest and land fire disasters in Siak Regency can be combined with ecotourism activities, especially in tourist village areas, by developing policies to strengthen the utilization of village-owned disaster mitigation facilities such as reservoirs, lakes, or ponds that are converted into water supplies during the dry season for forest and land fire disaster prevention activities and local economy-based tourist destinations. Our findings are a strategic effort to raise awareness among actors and highlight the need for policy-strengthening design in ecotourism-based disaster mitigation. These findings can also contribute to the literature that will be useful for all stakeholders in developing future long-term disaster mitigation governance policies. This study relies heavily on information from key informants, who represent only the perspectives and expertise of the stakeholders encountered. However, it still refers to important elements based on the informants’ knowledge capabilities in the disaster and tourism sectors. Therefore, we propose to conduct future studies on a comprehensive analysis of sustainable ecotourism-based disaster mitigation governance to promote and accelerate the idea of disaster and tourism in the future.
Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
Copyright © by EnPress Publisher. All rights reserved.