With the progress of science and technology, the research and development of silver nanoparticles has also developed. This paper attempts to prepare a silver nanoparticle by electrolyzing AgNO3 solution with electrochemical reduction method and citric acid as a complexing agent in a certain current and time. The crystal morphology and sample purity of silver nanoparticles were analyzed by X-ray diffractometer. The crystal structure of the nanoparticles was analyzed by scanning electron microscopy (SEM). The crystal structure of the nanoparticles was analyzed by X-ray diffraction. The particle size distribution of the particles was in the range of 125-199 nm, and the carbon paste electrode was modified with the prepared silver nanoparticles. The electrocatalytic activity of the carbon paste electrode was preliminarily explored.
Infrastructure development is critical for sustaining Asia’s economic growth. Unfortunately, huge financing gaps—estimated by a recent Asian Development Bank study to be USD22.5 trillion—constrain the ability of most emerging Asian countries to fully realize the benefits of infrastructure development. For instance, over 70% of infrastructure investments in Asia are still funded by public resources, which pose acute financing challenges for many countries with limited budgets and fiscal constraints. This paper discusses some of the challenges associated with public financing of infrastructure projects in emerging Asian countries, before introducing some new options for alleviating their infrastructure investment needs. In particular, it proposes a new approach to infrastructure financing by utilizing the spillover effects of infrastructure investment, where additional revenues generated from such investment can be channeled back to investors as subsidy to increase the returns to their investment. The paper also argues the need for Asian countries to implement fiscal reforms and to develop a more balanced approach to financing, one that involves both the private and public sector.
Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
Nickel Oxide (NiO) nanoparticles (NPs), doped with manganese (Mn) and cobalt (Co) at concentrations up to 8%, were synthesized using the composite hydroxide method (CHM). X-ray diffraction (XRD) analysis confirmed the formation of a cubic NiO structure, with no additional peaks detected, indicating successful doping. The average crystallite size was determined to range from 15 to 17.8 nm, depending on the dopant concentration. Scanning electron microscopy (SEM) images revealed mostly spherical, agglomerated particles, likely due to magnetic interactions. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the incorporation of Mn and Co into the NiO lattice, consistent with the XRD results. The dielectric properties exhibited a high dielectric constant at low frequencies, which can be attributed to ion jump orientation and space charge effects. The imaginary part of the dielectric constant decreased with increasing frequency, as it became harder for electrons to align with the alternating field at higher frequencies. Both the real and imaginary dielectric constants showed behavior consistent with Koop’s theory, increasing at low frequencies and decreasing at higher frequencies. Dielectric loss was primarily attributed to dipole flipping and charge migration. AC conductivity increased with frequency, and exhibited higher conductivity at high frequencies due to small polaron hopping. These co-doped NPs show potential for applications in solid oxide fuel cells.
The flipped classroom (FC) model has long brought significant benefits to higher education, secondary, and elementary education, particularly in improving the quality and effectiveness of learning. However, the implementation of FC model to support elementary students in developing self-learning skills (autonomous learning, independent study, self-directed learning) through technology still faces numerous challenges in Vietnam due to various influencing factors. Data for the study were collected through direct questionnaires and online surveys from 517 teachers at elementary schools in Da Nang, Vietnam. Based on SEM analysis, the study identified factors such as perceived usefulness, accessibility, desire, teaching style, and facilitating conditions. The research findings indicate that factors like the perceived effectiveness of the model, teaching style, and facilitating conditions have a positive correlation with the decision to adopt the FC model. Therefore, to encourage the use of the FC model in teaching, it is essential to raise awareness of the model’s effectiveness, improve teaching styles, and create favorable conditions for implementation.
Segregating the scavenging processes from the lubrication methodology is a very effective way of improving two-stroke cycle engine durability. The application of stepped or twin diameter pistons is one such method that has repeatedly shown significantly greater durability over comparable crankcase scavenged engines together with an ability to operate on neat fuel without any added oil. This research study presents the initial results observed from a gasoline/indolene fuelled stepped piston engine ultimately intended for Hybrid Electric Vehicle and/or Range Extender Electric Vehicle application using hydrogen fuelling. Hydrogen fuelling offers the potential to significantly reduce emissions, with near zero emission operation possible, and overcoming the serious issues of range anxiety in modern transport solutions. The low environmental impact is discussed along with results from 1-d Computational Fluid Dynamic modelling. The engine type is a low-cost solution countering the financial challenges of powertrain duplication evident with Hybrid Electric and Range Extender Electric Vehicles.
Copyright © by EnPress Publisher. All rights reserved.