The use of artificial intelligence (AI) is related to the dynamic development of digital skills. This article focuses on the impact of AI on the work of non-profit organizations that aim to help those around them. Based on 10 semi-structured interviews, it is presented here how it is possible to work with AI and in which areas it can be used—in social marketing, project management, routine bureaucracy. At the same time, workers and volunteers need to be educated in critical and logical thinking more than ever before. These days, AI is becoming more and more present in almost all the activities, bringing several benefits to those making use of it. On the one hand, by using AI in the day-to-day activities, the entities are able to substantially decrease their costs and have the advantage of being able to have, in most cases, a better and faster job done. On the other hand, those individuals that are more creative and more innovative in their line of work should not feel threatened by those situations in which organizations decide to use more AI technologies rather than human beings for the routine activities, since they will get the opportunity to perform tasks that truly require their intellectual capital and decision making abilities.
Kampar Regency, as the largest pineapple producer in Riau Province, has yet to provide significant added value for the surrounding SMEs. The limitations in technology and innovation, infrastructure support, and market access have prevented this potential from being optimally utilized. A Technopark can provide the necessary facilities and infrastructure to enhance production efficiency, innovation, and product quality, thus driving local economic growth. The objective of this study is to identify and determine potential locations for the development of a pineapple-based Technopark in Kampar Regency. This study is crucial as a fundamental consideration in selecting the technopark location and assessing the effectiveness and success of the technopark area. The method used in this study is AHP-GIS to analyze relevant parameters in the site selection process for the technopark area. Parameters considered in this study include slope, land use, availability of raw materials, accessibility of roads, access to water resources, proximity to universities, market access, population density, and landfill. The analysis results indicate that the percentage of land highly suitable for the technopark location is 0.78%, covering an area of 8943 hectares. Based on the analysis, it is recommended that potential locations for the development of a pineapple SMEs-based technopark in Kampar Regency are dispersed in Tambang District, encompassing three villages: Rimbo Panjang, Kualu Nenas and Tarai Bangun. The findings of this study align with the spatial planning of Kampar Regency.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
This research aims to investigate the factors shaping the investment choices of individuals in Saudi Arabia concerning cryptocurrencies, particularly focusing on the influence of the Fear of Missing Out (FOMO) psychological phenomenon. This study employs a mixed-methods approach to comprehend the factors influencing Saudi investors' decisions in the cryptocurrency realm. Quantitative surveys are conducted to gauge perceptions of risk, return, regulatory factors, and social influence. Additionally, qualitative interviews delve into the nuanced interplay of these elements and the impact of FOMO on decision-making. Integrating the Theory of Planned Behavior and Behavioral Finance theories, this research offers a holistic understanding of cryptocurrency investment determinants. The combined quantitative and qualitative methods provide a comprehensive view, enabling an in-depth analysis of the subject matter. The study reveals that Saudi Arabian investors' decisions regarding cryptocurrencies are significantly influenced by multiple factors, including perceived risk, potential return, regulatory environment, and social dynamics. FOMO emerges as a crucial psychological factor, interacting with these influences and driving decision-making. This research underscores the intricate interplay between these factors and FOMO, shedding light on the dynamics of cryptocurrency investment choices in the Saudi Arabian market. The findings hold implications for policymakers, financial institutions, and investors seeking deeper insights into this evolving landscape. Drawing from the Theory of Planned Behavior and Behavioral Finance, it examines perceived risk, return, regulatory factors, and social influence in influencing cryptocurrency investment choices among Saudi investors, focusing on the influence of Fear of Missing Out (FOMO). The research outcome provides insights for policymakers, financial institutions, and investors seeking to understand cryptocurrency investment dynamics in Saudi Arabia.
The proposed scientific article aims to analyze the application of Lean Six Sigma in the food industry. To this end, a detailed methodology has been designed that ranges from the selection of the works to the synthesis and presentation of the results obtained. The methodology is based on rigorous inclusion criteria to ensure the relevance and quality of the selected sources, including books, academic articles, theses, and other relevant documents. Through extensive searches of academic databases and other reliable sources, key works were identified that specifically address the implementation of Lean Six Sigma in the context of food production. Once the relevant papers were collected, a critical analysis was conducted to identify common themes, trends, and key findings. The works were classified according to their main focus, such as process improvement, waste reduction, supply chain optimization and food safety assurance. This categorization allowed the information to be organized in a coherent way and to facilitate the synthesis of the results. The results obtained were presented in a table that included details about each selected work, such as title, author, year of publication, abstract and links to the original source. This structured and rigorous approach provides a clear and comprehensive view of the topic, contributing to the advancement of knowledge in this area and offering practical guidance for practitioners and researchers interested in the application of Lean Six Sigma in the food industry. The literature on Lean Six Sigma in the food industry highlights its importance in improving efficiency, quality, and safety. Key recommendations include gradual implementation, appropriate training, focus on quality, and continuous improvement.
Catastrophes, like earthquakes, bring sudden and severe damage, causing fatalities, injuries, and property loss. This often triggers a rapid increase in insurance claims. These claims can encompass various types, such as life insurance claims for deaths, health insurance claims for injuries, and general insurance claims for property damage. For insurers offering multiple types of coverage, this surge in claims can pose a risk of financial losses or bankruptcy. One option for insurers is to transfer some of these risks to reinsurance companies. Reinsurance companies will assess the potential losses due to a catastrophe event, then issue catastrophe reinsurance contracts to insurance companies. This study aims to construct a valuation model for catastrophe reinsurance contracts that can cover claim losses arising from two types of insurance products. Valuation in this study is done using the Fundamental Theorem of Asset Pricing, which is the expected present value of the number of claims that occur during the reinsurance coverage period. The number of catastrophe events during the reinsurance coverage period is assumed to follow a Poisson process. Each impact of a catastrophe event, such as the number of fatalities and injuries that cause claims, is represented as random variables, and modeled using Peaks Over Threshold (POT). This study uses Clayton, Gumbel, and Frank copulas to describe various dependence characteristics between random variables. The parameters of the POT model and copula are estimated using Inference Functions for Margins method. After estimating the model parameters, Monte Carlo simulations are performed to obtain numerical solutions for the expected value of catastrophe reinsurance based on the Fundamental Theorem of Asset Pricing. The expected reinsurance value based on Monte Carlo simulations using Indonesian earthquake data from 1979–2021 is Rp 10,296,819,838.
Copyright © by EnPress Publisher. All rights reserved.