This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
Sport has become a fundamental socio-economic area. Currently, technological progress plays one of the most important roles in the development of sport. In the twenty-first century, innovation, and technology are significantly shaping the world of law enforcement and sports policing, and huge changes are taking place that need to be responded to. The development, spread and completion of info communication, information technology, digital technologies, and digitalization itself at an ever-faster pace than ever before are fundamentally changing all areas of the economy and society. Today there is no question that digitalization is the engine of the economy, which has an impact in all sectors, including sports and law enforcement. In the study, the authors examine the possibility of technical development in the field of sports safety. Among other things, drones, facial recognition systems and predictive analytics will be examined. The methodology used is mainly based on the analysis and examination of previous methods. The authors propose to adapt the innovative tools used at previous sports and mass events in the field of sports safety.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
According to the World Health Organization (WHO), breast cancer is among the most common cancers worldwide. Most of the anticancer agents have been showing a variety of side effects. Recently, bacterial proteins have been investigated as promising anticancer agents. Azurin is a bacterial cupredoxin protein secreted from Pseudomonas aeruginosa and has been reported as a potent multi-targeting anticancer agent, which makes it an appropriate candidate for drug delivery. Azurin may be delivered to cancer cells using different carriers like polymeric micro and nanoparticles. In the present study, azurin was extracted from the bacterial host and loaded into chitosan particles. Then its effect on MCF-7 cell line was investigated. Chitosan-azurin particles were made using the ion gelation method. Results showed that chitosan-azurin particles are about 200 nm, and the loading of the protein in particles did not affect its integrity. The MTT assay showed a significant reduction in cell viability in azurin and chitosan-azurin-treated cells. The toxicity level after 5 days was 63.78% and 82.53% for free azurin and chitosan-azurin-treated cells, respectively. It seems using an appropriate carrier system for anticancer proteins like azurin is a promising tool for developing low side effect anticancer agents.
Copyright © by EnPress Publisher. All rights reserved.