To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
In the modern economy, non-financial reporting has become an essential tool for evaluating the social performance of companies. This article explores the importance of non-financial reporting as a central element in assessing sustainable performance, focusing on analyzing sustainability reports published by 20 companies listed on the Bucharest Stock Exchange (BVB). The study examines how these companies approach environmental, social, and governance (ESG) aspects in their reports and what is the relationship between these aspects and financial reporting indicators. Through the statistical analysis of the non-financial reports published by companies participating in the study with the help of the Pearson coefficient and the regression equations, the correlation between the financial and non-financial indicators is determined in order to validate the research hypotheses. The results indicate increased attention to transparency and social responsibility, highlighting the correlation between sound reporting practices and cooperative performance by combining social and environmental aspects with financial information. The research also highlights the challenges encountered in the reporting process and the level of compliance with international sustainability standards.
The purpose of this study is to predict the frequency of mortality from urban traffic injuries for the most vulnerable road users before, during and after the confinement caused by COVID-19 in Santiago de Cali, Colombia. Descriptive statistical methods were applied to the frequency of traffic crash frequency to identify vulnerable road users. Spatial georeferencing was carried out to analyze the distribution of road crashes in the three moments, before, during, and after confinement, subsequently, the behavior of the most vulnerable road users at those three moments was predicted within the framework of the probabilistic random walk. The statistical results showed that the most vulnerable road user was the cyclist, followed by motorcyclist, motorcycle passenger, and pedestrian. Spatial georeferencing between the years 2019 and 2020 showed a change in the behavior of the crash density, while in 2021 a trend like the distribution of 2019 was observed. The predictions of the daily crash frequencies of these road users in the three moments were very close to the reported crash frequency. The predictions were strengthened by considering a descriptive analysis of a range of values that may indicate the possibility of underreporting in cases registered in the city’s official agency. These results provide new elements for policy makers to develop and implement preventive measures, allocate emergency resources, analyze the establishment of policies, plans and strategies aimed at the prevention and control of crashes due to traffic injuries in the face of extraordinary situations such as the COVID-19 pandemic or other similar events.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
In order to explore the application of the new integrated intelligent spore capture system developed in China in the prediction of cucumber downy mildew and cucumber powdery mildew, the main working parameters of the integrated intelligent spore capture system, such as the presence or absence of air cutting head, the height of air collection port and the time of air collection, were optimized by identifying the morphology of captured spores in the case of natural disease in the field. The relationship between the disease index of cucumber downy mildew and cucumber powdery mildew in greenhouse and the amount of spores captured was analyzed through the dynamic monitoring of disease and spores. The results show that when the air cutting head is not installed, the height of the air collection port is 70 cm, and the period of 10: 00–10: 30 was beneficial to the capture of spores. The disease index of cucumber downy mildew and cucumber powdery mildew had a strong positive correlation with the total amount of spores captured for 7 consecutive days. Continuous monitoring of cucumber downy mildew sporangia and rapid increase in the number is a predictor of the occurrence or rapid increase of cucumber downy mildew. The conidia of cucumber powdery mildew were not detected before the disease onset, and the number of conidia captured was still small at the peak of the disease. The research shows that the integrated intelligent spore capture system is suitable for the prediction of cucumber downy mildew, but there are still some problems in the prediction of cucumber powdery mildew.
Copyright © by EnPress Publisher. All rights reserved.