The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
The rapid development of cities and urbanization in China has forced the growth of new channels for buying agricultural products. The purpose of this research is to examine how Internet of Things (IoT’s) technologies can digitize a traditional fresh food supply chain. Comparative and descriptive analysis methods are used to highlight the major pain points in the traditional supply chains and assess how digital transformation could help. We delve into every part of digital transformation, which includes establishing an information platform based on IoT and developing smart storage options. Our findings revealed that through end-to-end digital integration, supply chain efficiency is improved with shorter lead times and leaner inventories that yield reduced costs as well as fewer losses while ensuring product quality and traceability. In sum, such an approach would enhance sustainability within the fresh food value chain. As such, our article highlights key aspects of transitioning towards a digital environment in this sector for those planning similar ventures.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
In order to study the temperature change trend of the surrounding geotechnical soil during the operation and thermal recovery of the medium-deep geothermal buried pipe and the influence of the geotechnical soil on the operational stability of the vertical buried pipe after thermal recovery. Based on the data of geological stratum in Guanzhong area and the actual engineering application of medium-deep geothermal buried pipe heating system in Xi’an New Area, the influence law of medium-deep geothermal buried pipe heat exchanger on surrounding geotechnical soil is simulated and analyzed by FLUENT software. The results show that: after four months of heating operation, in the upper layer of the geotechnical soil, the reverse heat exchange zone appears due to the higher fluid temperature; in the lower layer of the geotechnical soil, the temperature decreases more with the increase of depth and shows a linear increase in the depth direction; without considering the groundwater seepage, after eight months of thermal recovery of the geotechnical soil after heating, the maximum temperature difference after recovery is 3.02 ℃, and the average temperature difference after recovery is 1.30 ℃ The maximum temperature difference after recovery was 3.02 ℃ and the average temperature difference after recovery was 1.30 ℃. The geotechnical thermal recovery temperature difference has no significant effect on the long-term operation of the buried pipe, and it can be operated continuously and stably for a long time. Practice shows that due to the influence of various factors such as stratigraphic structure, stratigraphic pressure, radioactive decay and stratigraphic thermal conductivity, the actual stratigraphic temperature below 2000m recovers rapidly without significant temperature decay, fully reflecting the characteristics of the Earth’s constant temperature body.
Copyright © by EnPress Publisher. All rights reserved.