Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
The purpose of this work is to present the model of a Parabolic Trough Solar Collector (PTC) using the Finite Element Method to predict the thermal behavior of the working fluid along the collector receiver tube. The thermal efficiency is estimated based on the governing equations involved in the heat transfer processes. To validate the model results, a thermal simulation of the fluid was performed using Solidworks software. The maximum error obtained from the comparison of the modeling with the simulation was 7.6% at a flow rate of 1 L/min. According to the results obtained from the statistical errors, the method can effectively predict the fluid temperature at high flow rates. The developed model can be useful as a design tool, in the optimization of the time spent in the simulations generated by the software and in the minimization of the manufacturing costs related to Parabolic Trough Solar Collectors.
In many cases, the expected efficiency advantages of public-private partnership (PPP) projects as a specific form of infrastructure provision did not materialize ex post. From a Public Choice perspective, one simple explanation for many of the problems surrounded by the governance of PPPs is that the public decision-makers being involved in the process of initiating and implementing PPP projects (namely, politicians and public bureaucrats) in many situations make low- cost decisions in the sense of Kirchgässner (1948–2017). That is, their decisions may have a high impact on the wealth of the jurisdiction in which the PPP is located (most notably, on the welfare of citizen-taxpayers in this jurisdiction) but, at the same time, these decisions often only have a low impact on the private welfare of the individual decision-makers in politics and bureaucracy. The latter, for example, in many settings often have a low economic incentive to monitor/control what the private-sector partners are doing (or not doing) within a PPP arrangement. The purpose of this paper is to draw greater attention to the problems created by low-cost decisions for the governance of PPPs. Moreover, the paper discusses potential remedies arising from the viewpoint of Public Choice and Constitutional Political Economy.
The main objective of this study was comparative advantages analysis at social price of Num-mango in the export channels. The examination of the domestic resource cost per shadow exchange rate (DRC/SER) ratio provides insights into the comparative advantage of the trading system in the Num-mango industry. A comprehensive study was conducted, with a total of 317 observations, with a specific emphasis on the significant individuals in Vinh Long, Vietnam. The comparative advantage of the Num-mango commerce system was inferred from a DRC/SER ratio below one, which may be attributed to the existence of two distinct export channels. The DRC/SER in export channel 1 exhibited values of 0.55, 0.67, and 0.53 over the three seasons. In season 1, export channel 2 had a score of 0.42, which then was 0.79 in season 2. The value of export channel 2 had a consistent upward trend during season 3, reaching its highest point of 0.3. It is recommended that regulators and governments provide export-focused incentives that prioritize the maximum comparative advantage. This study examines the concept of comparative advantage within export supply chains, specifically in relation to a diverse selection of tropical fruits and vegetables. Furthermore, it provides empirical evidence that supports the applicability and reliability of the Ricardian model.
The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
Copyright © by EnPress Publisher. All rights reserved.