In order to optimize the environmental factors for cucumber growth, a fertilizer and water control system was designed based on the Internet of Things (IoT) system. The IoT system monitors environmental factors such as temperature, light and soil Ec value, and uses image processing to obtain four growth indicators such as cucumber stem height, stem diameter size, number of leaves and number of fruit set to establish a single growth indicator model for temperature, light, soil Ec value and growth stage, and the four growth indicators were fused to obtain the comprehensive growth indicator Ic for cucumber, and calculates its deviation to determine the cucumber growth status. Based on the integrated growth index Ic of cucumber, a soil Ec control model was established to provide the optimal environment and fertilizer ration for cucumber at different growth stages to achieve stable and high yield of cucumber.
Blockchain technology is poised to significantly transform the corporate world, heralding a new era of innovation and efficiency. Over the past few years, its impact has been noted by leaders, academics, and government representatives around the globe this growing interest underscores businesses’ need to evolve and reconsider traditional operational models. To remain competitive, organizations must embrace this change. Before introducing such ground-breaking technology, it is crucial to assess the motivations of primary stakeholders concerning its implementation. This study looks into what influences the use of Blockchain technology in the oil and gas sector, primarily using a quantitative survey of Iraqi oil and gas companies. A questionnaire was distributed among 250 top-level managers, senior executives, project managers, and IT managers for analyzing the data, the study employs the Structural Equation Modelling-Partial Least Squares (SEM-PLS) technique, with Smart PLS for data processing. The findings suggest that the intention to utilise blockchain technology is influenced by one’s attitude towards it. Competitive pressure (environmental factors), functional benefit, and privacy/security (technological factors) significantly affect blockchain adoption intention. Nevertheless, there was no discernible correlation between regulatory backing and the desire to use Blockchain. Additionally, cost concern and perceived risk (organizational factors) two factors contribute negatively to the perception of blockchain technology. Besides the direct relationship, the findings revealed that attitude toward blockchain technology mediate the relationship between cost concern, perceived risk, and intention to adopt Blockchain. Built upon the Technology-Organization-Environment (TOE) model and the Theory of Reasoned Action, this research offers a comprehensive framework for investigating the intention to adopt blockchain technology. The results enhance both theoretical understanding and practical implementation by providing valuable insights into the emerging area of blockchain adoption intentions.
The nexus between foreign direct investment, natural resource endowment, and their impact on sustained economic growth, is contentious. This study investigates the resource curse hypothesis and the effects of FDI on economic growth in Kazakhstan. The study covers the period from 1990 to 2022 and employs the Autoregressive Distributed Lag (ARDL) model and Toda-Yamamoto causality methods. The Bounds cointegration results reveal the existence of long-term equilibria between per capita GDP and the predictors. The findings reveal a significant impact of oil rents on economic growth, contradicting the resource curse hypothesis and suggesting a resource boon instead. In stark contrast, the impact of FDI on Kazakhstan’s economic growth is found to be insignificant, despite the presence of a causal nexus. Furthermore, economic freedom and export diversification have a positive significant impact on economic growth, while inflation exhibits a negative but significant impact. Although governance has a direct impact on GDP per capita, it is deemed insignificant, as the negative average governance index implies poor governance. Expectedly, the result establishes a causal effect between export diversification, economic freedom, governance, oil rents, and economic growth. This underscores the fundamental role played by the interplay of diversification, economic freedom, governance, and oil rents in fostering sustainable economic growth. In addition, economic freedom stimulates gross fixed capital formation, indicating that it enhances domestic investment. Notably, the findings refute the crowding-out effect of FDI on domestic investment in Kazakhstan. Consequently, to escape the resource curse and the Dutch disease syndrome, the study advocates for enhancing good governance capabilities in Kazakhstan. Thus, we recommend that good governance could reconcile the twin goals of economic diversification and deriving benefits from oil resources, ultimately transforming oil wealth into a boon in Kazakhstan.
Relying on the D-Vine copula model, this paper delves into the hedging capabilities of Brent crude oil against the exchange rate of oil-exporting and oil-importing nations. The results affirm Brent crude oil’s role as a safeguard and a refuge against the fluctuations of major currencies. Furthermore, we reaffirm that oil retains its robust hedging and safe-haven attributes during times of crisis, with currency co-movements across all countries exhibiting greater correlation than during the entire dataset. Additionally, our empirical findings highlight an unusually positive correlation between Brent crude oil and the Russian exchange rate during the Russia-Ukraine conflict, demonstrating that oil functions as a less effective hedge and a less dependable refuge for the Russian exchange rate in such geopolitical turbulence.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.