Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
Farm households in developing countries are often involved in a variety of livelihood income-generating activities to achieve basic needs and enhance food security. However, little attention has been given to investigating the effect of livelihood diversification strategies on the adoption of agricultural land management practices. This study explored the nexus between livelihood diversification and Agricultural Land Management (ALM) practices in the Southern Ethiopian Highlands. Data for this study were gathered through a structured questionnaire, interviews, and focus group discussions. A total of 423 sample respondents were selected by using multistage random sampling techniques. The data were analyzed using the Inverse Herfindahl Hirschman Diversity Index (IHHDI), the multinomial logit model (MNL), and the probit regression model. The findings of the study revealed that on-farm income activities are the most dominant livelihood income strategies (69.1%), followed by non-farm (21%) and off-farm (9.64%). The multinomial logit model analysis demonstrated that variables such as sex, education, family size, distance to market, land size, extension contact, membership in cooperatives, and household income were the major drivers of farmers income diversification activities (p<0.05). The results of the probit analysis indicated that income from crop production, daily labor work, rents from farmland, and farm assets have a positive and significant effect on households' decisions to implement ALM practices. In contrast, incomes from remittance and migrant sources have a negative but statistically significant impact on the adoption of ALM measures. The farm household sources of income-generating strategies substantially affected the adoption intensity of ALM measures. Income generated from the on-farm sector alone cannot be considered a core income-generating activity for households or a means of achieving food security. Therefore, land management policies and program implementations should consider farmers’ livelihood diversification and income-generating strategies. In addition, such interventions need to promote sustainable farming practices, enhance innovation, and related measures for the adoption of ALM measures to ensure land sustainability.
Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
This research explores the impact of employee green behavior on green transformational leadership (GTL) and green human resource management (GHRM), and their subsequent effects on sustainable performance within organizations. Utilizing a sample of 482 environmental quality promotion departments across Thailand, the study employs stratified random sampling to ensure representative data collection. Analysis was conducted using SPSS software, applying Ordinary Least Squares (OLS) regression to test the hypothesized relationships between the variables. The findings reveal a positive and significant influence of employee green behavior on both GTL and GHRM. Additionally, both GTL and GHRM are found to positively correlate with sustainable performance, indicating that enhanced leadership and management practices in the environmental domain can lead to better sustainability outcomes. This research utilizes the Ability-Motivation-Opportunity (AMO) theory as its theoretical framework, illustrating how organizations can leverage strategic HRM practices to promote environmental consciousness and action among employees, thereby enhancing their long-term sustainability success. Implications of this study underscore the importance of integrating green practices into leadership and HRM strategies, advocating for targeted training programs and energy conservation measures to boost environmental awareness and performance in the workplace. This contributes to the literature on sustainable performance by providing empirical evidence of the pathways through which green HRM and transformational leadership foster a sustainable organizational environment.
This study conducts a systematic review to explore the applications of Artificial Intelligence (AI) in mobile learning to support indigenous communities in Malaysia. It also examines the AI techniques used more broadly in education. The main objectives of this research are to investigate the role of Artificial Intelligence (AI) in support the mobile learning and education and provide a taxonomy that shows the stages of process that used in this research and presents the main AI applications that used in mobile learning and education. To identify relevant studies, four reputable databases—ScienceDirect, Web of Science, IEEE Xplore, and Scopus—were systematically searched using predetermined inclusion/exclusion criteria. This screening process resulted in 50 studies which were further classified into groups: AI Technologies (19 studies), Machine Learning (11), Deep Learning (8), Chatbots/ChatGPT/WeChat (4), and Other (8). The results were analyzed taxonomically to provide a structured framework for understanding the diverse applications of AI in mobile learning and education. This review summarizes current research and organizes it into a taxonomy that reveals trends and techniques in using AI to support mobile learning, particularly for indigenous groups in Malaysia.
Copyright © by EnPress Publisher. All rights reserved.