The curriculum reform in 2022 puts forward new requirements for the professional literacy cultivation of primary science teachers, and the cultivation of primary science classroom teaching skills is an important aspect of the professional literacy cultivation of science education teachers, mainly including subject knowledge and teaching theory, teaching design and preparation, teaching methods and strategies. On the basis of following the principle of combining theory and practice, diversified teaching and student subjectivity, the training strategies of group cooperative learning, observing the teaching process of excellent teachers, and strengthening the effect of micro-grid teaching are proposed, and in addition to the expected evaluation, it provides a certain theoretical basis for the cultivation of normal students in science education.
Dong brocade, a fabric renowned for its intricate patterns and ethnic symbolism, has been woven by the Dong people for generations, showcasing their cultural significance. Traditional plant dyeing technology is one of the main aspects of Dong brocade but the documentation and understanding of this is still rather limited. With regard to the use of plant dye in Dong brocade, it is not as well explored as it should be since it has a traditional aspect. The main purpose is to investigate and apply the traditional plant dyeing technique to Dong brocade for the improvement of that sustainable concept and the preservation of cultural assets. Therefore, 121 Dong villagers were interviewed to elicit their awareness regarding prehistoric plant dyeing. By observing the dyeing conditions, this study provided accurate perception and learned how to differentiate between natural and synthetic mordants through ethnobotanical perception. The strategy is intended to integrate sustainable products into Dong brocade, employing orthogonal array development to find the right dyeing conditions for corresponding plant dyes. Research revealed that 8 genera of plants which include 7 species are used in dyeing Dong brocade. The findings presented in this work prove the effectiveness of the use of plant dyes in Dong brocade, showing its advantages with 30% of frequency and CI (Color Index) indices, 8% of them being cultural. 5 for ethnic cultural sustainment, developmental and bio-diversity reasons respectively. The unique integration between the traditional dyeing technique in Dong brocade and the utilization of sustainable resources is very promising for the improvement of identity enhancement and embodiment, and the preservation of the environment.
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
To achieve sustainable development, detailed planning, control and management of land cover changes that occur naturally or by human caused artificial factors, are essential. Urban managers and planners need a tool that represents them the information accurate, fast and in exact time. In this study, land use changes of 3 periods, 1994-2002, 2002-2009, 2009-2015 and predictions of 2009, 2015 and 2023 were assessed. In this paper, Maximum Likelihood method was used to classify the images, so that after evaluation of accuracy, amount of overall accuracy for images of 2013 was 85.55% and its Kappa coefficient was 80.03%. To predict land use changes, Markov-CA model was used after assessing the accuracy, and the amount of overall accuracy for 2009 was 82.57% and for 2015 was 93.865%. Then web GIS application was designed via map server application and evoked shape files through map file and open layers to browser environment and for design of appearance of website CSS, HTML and JavaScript languages were used. HTML is responsible for creating the foundation and overall structure of webpage but beautifying and layout design on CSS.
Copyright © by EnPress Publisher. All rights reserved.