This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
Building cooling load depends on heat gains from the outside environment. Appropriate orientation and masonry materials play vital roles in the reduction of overall thermal loads buildings. A net-zero energy building performance has been analyzed in order to ascertain the optimum orientation and wall material properties, under the climatic conditions of Owerri, Nigeria. Standard cooling load estimation techniques were employed for the determination of the diurnal interior load variations in a building incorporating renewable energy as the major energy source, and compared with the situation in a conventionally powered building. The results show a 19.28% reduction in the building’s cooling load when brick masonry was used for the wall construction. It was observed that a higher heat gain occurred when the building faced the East-West direction than when it was oriented in the North-South direction. Significant diurnal cooling loads variation as a result of radiation through the windows was also observed, with the east facing windows contributing significantly higher loads during the morning hours while the west facing windows contributed higher amounts in the evening. The economic analysis of the net-zero energy building showed an 11.63% reduction in energy cost compared to the conventional building, with a 7-year payback period for the use of Solar PV systems. Therefore, the concept of net-zero energy building will not only help in energy conservation, but also in cost savings, and the reduction of carbon footprint in the built environment.
Gout is an arthritis characterized by the deposition of sodium monoacid crystals in the synovial membrane, articular cartilage, and periarticular tissues that leads to an inflamatory process. In most cases, the diagnosis is established by clinical criteria and analysis of the synovial fluid for MSU crystals. However, gout may manifest in atypical ways and make diagnosis difficult. In these situations, imaging studies play a fundamental role in helping to confirm the diagnosis or even exclude other differential diagnoses. Conventional radiography is still the most commonly used method in the follow-up of these patients, but it is a very insensitive test, because it only detects late changes. In recent years, advances in imaging methods have emerged in relation to gout. Ultrasound has proven to be a highly accurate test in the diagnosis of gout, identifying MSU deposits in articular cartilage and periarticular tissues, and detecting and characterizing tophi, tendinopathies, and tophi enthesopathies. Computed tomography is an excellent exam for the detection of bone erosions and evaluation of spinal involvement. Dual-energy computed tomography, a new method that provides information on the chemical composition of tissues, allows identification of MSU deposits with high accuracy. MRI can be useful in the evaluation of deep tissues not accessible by ultrasound. In addition to diagnosis, with the emergence of drugs that aim to reduce the tophaceous burden, imaging examinations become a useful tool in the follow-up treatment of gout patients.
The structure, thermodynamic stability, ionization potential (IP) and electron affinity (EA) energy level difference (Eg) and tension of lowest unoccupied orbit (LUMO) and highest occupied orbit (HOMO) of armchair single wall carbon nanotubes (C-NTs), BN hybrid carbon nanotubes (BC2N-NTs) and all BN nanotubes (BN-NTs) were systematically studied with AM1 method in this paper. Calculation results show that when n value is constant, (n, n) C-NTs (n = 3,4,5,6) has the largest diameter and BN-NTs has the smallest diameter; (n, n) the values of Eg (HOMO-LUMO) and n of C-NTs and BC2N-NTs are related; POAV analysis shows that different hybrid atoms have different contributions to the hybrid mode of nanotube atoms and the tension of nanotubes.
The direct expansion heat pump with solar energy is an energy conversion system used for water heating applications, air heating for air conditioning buildings, water desalination, solar drying, among others. This paper reviews the main designs and analysis of experiments in order to identify the fundamental objectives of any experiment which may be: to determine the factors that have a significant influence, to obtain a mathematical model and/or to optimize performance. To achieve this task, the basic and advanced configuration of this system is described in detail in order to characterize its thermal performance by means of energy analysis and/or exergy-based analysis. This review identifies possible lines of research in the area of design and analysis of experiments to develop this water heating technology for industrial applications.
Copyright © by EnPress Publisher. All rights reserved.