Rapid global warming and continuous climate change threaten the construction industry and human existence, especially in developing countries. Many developed countries are engaging their professional stakeholders on innovation and technology to mitigate climate change on humanity. Studies concerning inclusive efforts by developing countries’ stakeholders, including Nigeria, are scarce. Thus, this study investigates the construction industry’s practitioners’ preparedness to mitigate climate change through pre- and post-planning. Also, the study appraises climate change’s impact on construction activities and proffered measures to mitigate them. The research employed face-to-face data collection via a qualitative approach. The researchers engaged 33 knowledgeable participants. The study covered Abuja, Benin City, Owerri, and Lagos and achieved saturation at the 30th participant. The research employed a thematic approach to analyse the collected data. Findings reveal that Nigerian construction practitioners cannot cope with climate change impacts because of lax planning and inadequate technology to mitigate the issues. Also, the government’s attitude towards climate change has not helped matters. Also, the study suggested measures to mitigate the impact of climate change on construction activities in Nigeria. Therefore, as part of the research contributions, all-inclusive and integrated regulatory policies and programmes should be tailored toward mitigating climate change. This includes integrated stakeholder sensitisation, investment in infrastructure that supports anti-climate change, prioritising practices in the industry to achieve sustainable project transformation, and integration of climate change interventions into pre- and post-contract administration.
The study of the performance of high-efficiency heat pump systems has been a hot issue of general interest in the field of heat pump air conditioning. For the designed and developed two-stage casing tandem heat exchanger of heat pump system, the 3D finite volume method and the realizable k-ε model are used to numerically analyze the influence law of inlet fluid temperature and flow velocity on the overall heat transfer coefficient as well as the Nussle number of inner and outer tubes. The results show that decreasing the inlet water temperature or increasing the inlet refrigerant temperature can improve the overall heat transfer performance; Nuin increases with the increase of water and refrigerant flow rates, while Nuout increases with the increase of water flow rate but decreases with the increase of refrigerant flow rate; Nuin and Nuout both increase with the decrease of water temperature or refrigerant temperature increases.
In order to study the temperature change trend of the surrounding geotechnical soil during the operation and thermal recovery of the medium-deep geothermal buried pipe and the influence of the geotechnical soil on the operational stability of the vertical buried pipe after thermal recovery. Based on the data of geological stratum in Guanzhong area and the actual engineering application of medium-deep geothermal buried pipe heating system in Xi’an New Area, the influence law of medium-deep geothermal buried pipe heat exchanger on surrounding geotechnical soil is simulated and analyzed by FLUENT software. The results show that: after four months of heating operation, in the upper layer of the geotechnical soil, the reverse heat exchange zone appears due to the higher fluid temperature; in the lower layer of the geotechnical soil, the temperature decreases more with the increase of depth and shows a linear increase in the depth direction; without considering the groundwater seepage, after eight months of thermal recovery of the geotechnical soil after heating, the maximum temperature difference after recovery is 3.02 ℃, and the average temperature difference after recovery is 1.30 ℃ The maximum temperature difference after recovery was 3.02 ℃ and the average temperature difference after recovery was 1.30 ℃. The geotechnical thermal recovery temperature difference has no significant effect on the long-term operation of the buried pipe, and it can be operated continuously and stably for a long time. Practice shows that due to the influence of various factors such as stratigraphic structure, stratigraphic pressure, radioactive decay and stratigraphic thermal conductivity, the actual stratigraphic temperature below 2000m recovers rapidly without significant temperature decay, fully reflecting the characteristics of the Earth’s constant temperature body.
Forest is the main carbon sink of terrestrial ecosystem. Due to the unique growth characteristics of plants, the response of their growth status and physiological activities to climate change will affect the carbon cycle process of forest ecosystem. Based on the local scale CO2 flux and temperature observation data recorded by the FLUXNET registration site and Harvard Forest FLUX observation tower from 2000 to 2012, combined with the phenological model, this paper analyzes the impact of temperature changes on CO2 flux in temperate forest ecosystems. The results show that: (1) the maximum NEE in 2000–2012 was 298.13 g·m-2·a-1, which occurred in 2010. Except in the 2010 and 2011, the annual NEE in other years was negative. (2) NEE, GPP, temperature and phenology models have good fitting effects (R2 > 0.8), which shows that the stable period of photosynthesis in temperate mixed forest ecosystem is mainly concentrated in summer, and vegetation growth is the dominant factor of carbon cycle in temperate mixed forest ecosystem. (3) The linear fitting results of the change time points of air temperature (maximum point, minimum point and 0 point date) and the change time points of NEE and GPP (maximum point, minimum point and 0 point date) show that there is a significant positive correlation between air temperature and CO2 flux (P < 0.01), and the change of air temperature affects the carbon cycle process of temperate mixed forest ecosystem.
The effects of climate change are already being felt, including the failure to harvest several agricultural products. On the other hand, peatland requires good management because it is a high carbon store and is vulnerable as a contributor to high emissions if it catches fire. This study aims to determine the potential for livelihood options through land management with an agroforestry pattern in peatlands. The methods used are field observation and in-depth interviews. The research location is in Kuburaya Regency, West Kalimantan, Indonesia. Several land use scenarios are presented using additional secondary data. The results show that agroforestry provides more livelihood options than monoculture farming or wood. The economic contribution is very important so that people reduce slash-and-burn activities that can increase carbon emissions and threaten the sustainability of peatland.
Copyright © by EnPress Publisher. All rights reserved.