The incorporation of artificial intelligence (AI) into language education has created new opportunities for improving the instruction and acquisition of Chinese characters. Nevertheless, the cognitive difficulties linked to the acquisition of Chinese characters, such as their intricate visual features and lack of clear meaning, necessitate thoughtful deliberation when developing AI-supported learning interventions. The objective of this project is to explore the capacity of a collaborative method between humans and machines in teaching Chinese characters, utilising the advantages of both human expertise and AI technology. We specifically investigate the utilisation of ChatGPT, a substantial language model, for the creation of instructional materials and evaluation methods aimed at teaching Chinese characters to individuals who are not native speakers. The study utilises a mixed-methods approach, which involves both qualitative examination of lesson plans created by ChatGPT and quantitative evaluation of student learning outcomes. The results indicate that the suggested framework for human-machine collaboration can successfully tackle the cognitive difficulties associated with learning Chinese characters, resulting in enhanced learner involvement and performance. Nevertheless, the research also emphasises the constraints of AI-generated material and the significance of human involvement in guaranteeing the accuracy and dependability of educational interventions. This research adds to the expanding collection of literature on AI-assisted language learning and offers practical insights for educators and instructional designers who aim to use AI tools into Chinese language curriculum. The results emphasise the necessity of employing a multi-disciplinary strategy in AI-supported language learning, incorporating knowledge from cognitive psychology, educational technology, and second language acquisition.
The cambucizeiro (Campomanesia phaea), belonging to the Myrtaceae family, is a native plant of the Brazilian Atlantic Forest. The description of the characteristics of the cambucizeiro fruits is important to support new genetic improvement works and its commercial exploitation, especially regarding the processing of the fruit. The present work aimed to perform the morphological and chemical characterization of the cambucizeiro fruits. Fifty-eight accessions, from different locations in the Atlantic Forest and Serra do Mar in the state of São Paulo, were collected, propagated by seeds and one specimen of each accessory is at the Seedling Production Center in São Bento do Sapucaí (SP). Forty fruits from each access were collected in May and submitted to the following analyses: longitudinal and transversal diameter, total fruit fresh mass, number and mass of seeds, total soluble solids, % citric acid, ratio, firmness, vitamin C and coloration. Fruit conformation varies intensely among accessions. The number of seeds is not a good indicator for the relation with the fruit mass, but the mass of one thousand seeds. Some accessions have high soluble solids content, but, on the other hand, the vast majority have fruits with high acidity. Cambuci is an excellent source of vitamin C. The fruits of the accessions are green in color, persisting an opaque shade when ripe.
Our environment has been significantly impacted by man-made pollutants, primarily due to industries making substantial use of synthetic chemicals, resulting in significant environmental consequences. In this research investigation, the co-precipitation approach was employed for the synthesis of cellulose-based ferric oxide (Fe2O3/cellulose) and copper oxide nanoparticles (CuOx-NPs). Scanning electron microscopy (SEM) analyses were conducted to determine the properties of the newly synthesised nanoparticles. Furthermore, the synthesized nanoparticles were employed for eliminating chromium from aqueous media under various conditions, including temperature, contact time, adsorbent concentration, adsorbate concentration, and pH. Additionally, the synthesised materials were used to recover Cr(VI) ions from real samples, including tap water, seawater, and industrial water, and the adsorptive capacity of both materials was evaluated under optimal conditions. The synthesis of Fe2O3/cellulose and CuOx-NPs proved to be effective, as indicated by the outcomes of the study.
This work was carried out with the purpose of generating ecological and silvicultural information oriented to sustainable management. The horizontal structure was evaluated using the importance value index of Curtis and Macintosh, the vertical structure using Finol’s methodology. Through the sociological position index, the percentage natural regeneration and the extended importance value index were estimated in order to infer the permanence of the forest ecosystem. The floristic composition was represented by species of the families Anacardiaceae, Apocynaceae, Fabaceae, Santalaceae, Rhamnaceae, Sapotaceae, Simarubaceae, Ulmaceae, Zygophyllaceae, Capparidaceae, Borraginaceae and Achatocarpaceae. In the horizontal structure, the species with the highest rank was Acacia praecox, followed in order of importance by Schinopsis balansae, Aspidosperma quebracho blanco and Prosopis kuntzei. According to sociological position, Acacia praecox was the most representative species, followed by Patagonula americana, Schinus longifolius, Proposis kuntzei and Aspidosperma quebracho blanco. The species with the best regeneration values were Achatocarpus nigricans and Acacia praecox in the shrub layer and Patagonula americana in the tree layer. The extended importance index consolidated the category of Acacia praecox in the community and gave a better category to Schinopsis balansae, Aspidosperma quebracho blanco, Prosopis kuntzei and Patagonula americana.
In this paper, electrically conductive composites comprised of silicone rubber and titanium diboride (TiB2) were synthesized by conventional mixing methods. Fine particles of TiB2 (in micron size) and 10 parts per hundred parts of rubber (phr) proportion of carbon black (XC-72) were used to make the composites with HTV silicone rubber. The composites were cured at appropriate temperature and pressure and the effect on the electrical properties was studied. The resistance of the silicone rubber is ~ 1015Ω which decreases to 1–2 kΩ in case of composites with negligible effect of heat ageing. The hardness increases by ~ 35% simultaneous to the decrease of ~ 47% in the tensile strength. Morphological characterization indicates the homogeneous dispersion of the fillers in the composite.
Copyright © by EnPress Publisher. All rights reserved.