E-learning has become an integral part of higher education, significantly influencing the teaching and learning landscape. This study investigates the impact of student characteristics such as gender, grade, and major on E-learning satisfaction. Utilizing Structural Equation Modeling (SEM) and collecting data through 527 valid questionnaires from Nanjing Normal University students, this research reveals the nuanced relationships between these variables and E-learning satisfaction. The findings indicate that gender, grade, and major significantly and positively impact student satisfaction with E-learning, highlighting the need for tailored E-learning resources to meet diverse student needs. The study underscores the importance of continuous improvement in E-learning resources and platforms to enhance student satisfaction. This research contributes to the understanding of effective E-learning strategies in higher education institutions.
Social media has become one of the primary sources of communication, information, entertainment, and learning for users. Children gain several benefits as social media helps them acquire formal and informal learning opportunities. This research also examined the effect of social media on formal and informal learning among school-level children in Ajman, United Arab Emirates (UAE), moderated by social integrative and personal integrative needs. Data was gathered by using structured questionnaires, which were distributed among a sample of 364 children. Results revealed that social media significantly affects Informal and formal learning among children, indicating its usefulness in child education and development. The results also indicated a significant moderation of social integrative needs on social media’s direct effect on informal learning, indicating the relevant needs as an important motivating factor. However, the moderation of personal integrative needs on social media’s direct effect on formal learning remained insignificant. Overall, this research highlighted the role of social media in providing learning opportunities for children in the UAE. It is concluded that children actively seek gratifications from social media, shaping their learning within structured educational contexts in their daily lives. Through the lens of UGT, certain needs play a critical role in strengthening the gratification process, affecting how children derive learning advantages from their interactions on social media platforms. Finally, implications and limitations are discussed accordingly.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
Climate change is a pressing global challenge that requires immediate action. To address this issue effectively, it is essential to engage and empower the younger generation who will shape the future. This abstract presents the experience of Mohamed Bin Zayed University for Humanities (MBZUH) in UAE in promoting climate action through youth empowerment and environmental education.MBZUH has recognized the significance of incorporating environmental education into its curriculum to foster a generation of environmentally conscious individuals. Through a multidimensional approach, the university has developed innovative strategies to empower students, enabling them to become active participants in addressing climate change. These strategies encompass both formal and informal education, leveraging various platforms and partnerships to create a comprehensive learning environment.This study delves into the initiatives undertaken by MBZUH to empower youth in climate action. It explores the incorporation of environmental education across disciplines, integrating sustainability principles into existing courses, and offering specialized programs focused on environmental science and climate studies. Additionally, it highlights the university's efforts in promoting hands-on learning experiences, such as field trips, research projects, and community engagement, to deepen students' understanding of climate issues and inspire practical action.Furthermore, the study examines the role of MBZUH's collaboration with local and international organizations, governmental bodies, and the wider community in fostering youth empowerment and climate action. It showcases successful partnerships that have resulted in impactful initiatives, including awareness campaigns, capacity-building workshops, and youth-led environmental projects.By sharing the experience of MBZUH, this study aims to provide valuable insights and best practices for promoting climate action through youth empowerment and environmental education. It underscores the importance of empowering the next generation with the knowledge, skills, and motivation to become effective agents of change in addressing climate challenges.
Copyright © by EnPress Publisher. All rights reserved.