Fintech as a three-dimensional phenomenon reflects the rapidly changing technological, financial and business environment. The bibliometric analysis of scientific articles allowed us to identify the main themes and create a map of the field of fintech influences. Systematization of scientific articles revealed the influence of economic development and socio-demographic inequality on fintech development. Government regulatory policies can accelerate the digitisation of financial services and financial inclusion and help the fintech sector face geopolitical challenges. Fintech’s impact was divided into three areas: financial stability and sustainable development, the business ecosystem and human behaviour. The research we summarised allowed us to identify the mechanisms through which fintech influences various fields. A complex approach to the influence of fintech enables us to understand the phenomenon and make better decisions.
We reviewed the research on super-hydrophobic materials. Firstly, we introduced the basic principles of super-hydrophobic materials, including the Young equation, Wenzel model, and Cassie model. Then, we summarized the main preparation methods and research results of super-hydrophobic materials, such as the template method, soft etching method, electrospinning method, and sol-gel method. Among them, the electrospinning method that has developed in recent years is a new technology for preparing micro/nanofibers. Finally, the applications of super-hydrophobic materials in the field of coatings, fabric and filter material, anti-fogging, and antibacterial were introduced, and the problems existing in the preparation of super-hydrophobic materials were pointed out, such as unavailable industrialized production, high cost, and poor durability of the materials. Therefore, it is necessary to make a further study on the application of the materials in the selection, preparation, and post-treatment.
The potential of nanotechnology to improve human health, optimize natural resource utilization, and reduce environmental pollution is remarkable. With the ever-growing advancement in dentistry, one of the breakthroughs is using nanotechnology. Nanotechnology in periodontics has touched every aspect of treatment modality, from non-surgical therapy to implant procedures, including regenerative procedures. Understanding their mechanism plays a pivotal role in more efficient usage of nanotechnology, better treatment procedures, and eventually better outcomes. In this paper, we review the application of nanotechnology in periodontal therapy. We performed the search for papers in Scopus using the key words and phrases as follows: “nanodentistry”; “dentistry and nanotechnology”; “dentistry and nanoparticles”; “dentistry and nanomedicine”; “dentistry and nanorobots”. There were found 530 papers in total. Some papers belonged to two and more categories. It is revealed that the number of papers versus year does not follow any specific pattern, but the cumulative amount of papers versus year is fitted with the exponential regression. There were also selected papers using certain inclusion/exclusion criteria. Only the selected papers were analyzed. Nanomedicine is subjected to intensive studies nowadays. There are some promising results that will likely be implemented into praxis soon in the fields of medical diagnostics and clinical therapeutics. The appearance of nanotechnology can have a considerable impact on the treatment of periodontal diseases.
With modern society and the ever-increasing consumption of polymeric materials, the way we look at products has changed, and one of the main questions we have is about the negative impacts caused to the environment in the most diverse stages of the life cycle of these materials, whether in the acquisition of raw materials, in manufacturing, distribution, use or even in their final disposal. The main methodology currently used to assess the environmental impacts of products from their origin to their final disposal is known as Life Cycle Assessment (LCA). Thus, the objective of this work is to evaluate how much the biodegradable polymer contributes to the environment in relation to the conventional polymer considering the application of LCA in the production mode. This analysis is configured through the Systematic Literature Review (SLR) method. In this review, 28 studies were selected for evaluation, whose approaches encompass knowledge on LCA, green biopolymer (from a renewable but non-biodegradable source), conventional polymer (from a non-renewable source) and, mainly, the benefits of using biodegradable polymers produced from renewable sources, such as: corn, sugarcane, cellulose, chitin and others. Based on the surveys, a comparative analysis of LCA applications was made, whose studies considered evaluating quantitative results in the application of LCA, in biodegradable and conventional polymers. The results, based on comparisons between extraction and production of biodegradable polymers in relation to conventional polymers, indicate greater environmental benefits related to the use of biodegradable polymers.
Lead halide perovskites are the new rising generation of semiconductor materials due to their unique optical and electrical properties. The investigation of the interaction of halide perovskites and light is a key issue not only for understanding their photophysics but also for practical applications. Hence, tremendous efforts have been devoted to this topic and brunch into two: (i) decomposition of the halide perovskites thin films under light illumination; and (ii) influence of light soaking on their photoluminescence (PL) properties. In this review, we for the first time thoroughly compare the illumination conditions and the sample environment to correlate the PL changes and decomposition of perovskite under light illumination. In the case of vacuum and dry nitrogen, PL of the halide perovskite (MAPbI3–xClx, MAPbBr3–xClx, MAPbI3) thin films decreases due to the defects induced by light illumination, and under high excitations, the thin film even decomposes. In the presence of oxygen or moisture, light induces the PL enhancement of halide perovskite (MAPbI3) thin films at low light illumination, while increasing the excitation, which causes the PL to quench and perovskite thin film to decompose. In the case of mixed halide perovskite ((MA)Pb(BrxI1-x)3) light induces reversible segregation of Br domains and I domains.
This study employs logistic regression to investigate determinants influencing active living among elderly individuals, with “Active Living” (1 = Active, 0 = Inactive) as the dependent variable. Analysing data from 500 participants, findings reveal significant associations between active living and variables such as chronic conditions (OR = 0.29, p < 0.001), mental well-being (OR = 1.57, p < 0.001), social support (OR = 5.75, p < 0.001), access to parks/recreational facilities (OR = 2.59, p < 0.001), income levels (OR = 1.82, p = 0.003), cultural attitudes (OR = 2.72, p < 0.001), and self-efficacy (OR = 2.01, p < 0.001). These findings highlight the complex interplay of factors influencing active living among elderly populations. Recommendations include implementing targeted interventions to manage chronic conditions, enhance mental well-being, strengthen social networks, improve access to recreational spaces, provide economic support for fitness activities, promote positive cultural attitudes towards aging, and empower older adults through self-efficacy programs. Such interventions are crucial for promoting healthier aging and fostering sustained engagement in physical activity among older adults.
Copyright © by EnPress Publisher. All rights reserved.