The propagation of plant material in the arracacha crop is commonly done vegetatively through asexual seed, this activity has allowed its multiplication and conservation over time. The plant material available is of low quality, affecting the development and potential yield of the crop and therefore the producer’s income. The objective of the research was to comparatively analyze two technologies for the production of arracacha seed: local technology and Agrosavia technology. The information for the local technology was obtained from surveys applied to farmers and the selection was made using the deterministic sampling technique, and for the Agrosavia technology through the recording of data and production costs in research lots at commercial scale. Descriptive statistics and calculation of economic return indicators were applied for the two situations. The results show that the use of quality seed allows obtaining higher seed production (251,559 unit ha-1) and tuberous roots (25,875 kg ha-1), being superior to local technology by 14% and 28% respectively; thus, the arracacha producer acquires greater economic efficiency by obtaining lower unit cost per kilo produced and better net income with a marginal rate of return of 316.45. The results achieved are useful for farmers, companies and entities that wish to produce quality seed and support the arracacha production system in Colombia.
The purpose of this article is to determine the equitability of airport and university allocations throughout Ethiopian regional states based on the number of airports and institutions per 1 million people. According to the sample, the majority of respondents believed that university allocation in Ethiopia is equitable. In contrast, the majority of respondents who were asked about airports stated that there is an uneven distribution of airports across Ethiopia’s regional states. Hence, both interviewees and focus group discussants stated that there is a lack of equitable distribution of universities and airports across Ethiopia’s regional states. This paper contributes a lesson on how to create a comprehensive set of determining factors for equitable infrastructure allocation. It also provides a methodological improvement for assessing infrastructure equity and other broader implications across Ethiopian regional states.
This paper contributes to a long-standing debate in development practice: under what conditions can externally established participatory groups engage in the collective management of services beyond the life of a project? Using 10 years of panel data on water point functionality from Indonesia’s rural water program, the Program for Community-Based Water Supply and Sanitation, the paper explored the determinants of subnational variation in infrastructure sustainability. It then investigated positive and negative deviance cases to answer why some communities successfully engaged in system management despite being located in difficult conditions as per quantitative findings and vice versa. The findings show that differences in the implementation of community participation, driven by local social relations between frontline service providers, that is, village authorities and water user groups, explain sustainable management. This initial condition of state-society relations influences how the project is initiated, kicking off negative or positive reinforcing pathways, leading to community collective action or exit. The paper concludes that the relationships between frontline government representatives and community actors are important and are an underexamined aspect of the ability of external projects to generate successful community-led management of public goods.
The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
One-dimensional unsteady theoretical models of three different photovoltaic module installation modes are established. Through MATLAB modeling and simulation, the influence of photovoltaic modules on roof heat transfer in different layout modes is compared. Comparing with ordinary roof, the shading effect of photovoltaic roof in summer and heat preservation effect in winter was analyzed. The results show that the PV roof layout with ventilation channel is better in summer. The proof layout with closed flow channel is better in winter.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
Copyright © by EnPress Publisher. All rights reserved.