Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
Rambutan (Nephelium lappaceum L.) was introduced to Mexico in 1959. Currently there is an estimated planted area of 835.96 ha and a production of 8,730.27 tons. The fruit is mainly consumed fresh, but quickly loses its external appearance due to dehydration and browning, which limits its commercialization, an alternative may be minimal processing and adjuvant treatments that extend the shelf life. The objective of this work was to evaluate the effect of coating with cactus mucilage (Opuntia ficus-indica), in the preservation of minimally processed rambutan stored at 5 °C, in two types of packaging. The rambutan was sanitized with chlorinated water (80 ppm), the epicarp was removed and batches were formed for each treatment. The factors were type of container (polyethylene bag and polystyrene container), coating (with and without coating) and time (0, 3, 6, 6, 10 and 12 d). The coating consisted of mucilage obtained from developing cladodes (15–21 cm), applied by dipping. All treatments were stored at 5 ℃. Total soluble solids (TSS), firmness (N) and color (L*, a*, b*, chroma and hue angle) were evaluated at each storage period. Also, 40 untrained judges (47% male and 53% female) evaluated sensory acceptability, consumption intention and acceptance/rejection. The results showed significant effect (p ≤ 0.05) of package type on firmness, chroma and hue angle. Coating had an effect on L* value and product acceptability. Consumption intention was higher, and was maintained for 10 days, in fruits with coating and packaged in polyethylene bags, stored at 5 ℃.
Based on the density-functional theory (DFT) combined with nonequilibrium Green’s function (NGF), this paper investigates the effects of either single aluminum (Al) or single phosphorus (P) atom substitutions at different edge positions of zigzag-edged silicene nanoribbons (ZGNRs) in the ferromagnetic state on the spin-dependent transport properties and spin thermoelectric effects. It has been found that the spin polarization at the Fermi level can reach 100% or –100% in the doped ZSiNRs. Meanwhile, the spin-up Seebeck effect (for –100% case) and spin-down Seebeck effect (for 100% case) are also enhanced. Moreover, the spin Seebeck coefficient is much larger than the corresponding charge Seebeck coefficient at a special doping position and electron energy. Therefore, the study shows that the Al or P doped ZSiNRs can be used to prepare the ideal thermospin devices.
Broccoli has been consumed around the world in various ways; either raw, blanched, frozen, dehydrated or fermented; however, functional foods and nutraceuticals are currently being designed and marketed from broccoli, through the extraction of compounds such as sulforaphane, which according to several studies and depending on its bioavailability has a protective effect on some types of cancer. Likewise, several food technologies are reported to seek to offer innovative foods to increasingly careful and critical consumers, ensuring that they retain their nutritional and sensory attributes even after processing and that they are also safe. In this sense, studies on the effect of processing on compounds of interest to health are of great relevance. Therefore, this article presents an overview on the study of traditionally consumed broccoli and the design of new products from the use of agro-industrial residues that, due to their high content of fiber and fitochemical compounds, can benefit the quality of life of the human population.
This paper analyzed the equitable allocation of infrastructure across regional states in Ethiopia. In general, in the past years, there has been a good start in the infrastructure sector in Ethiopia. However, the governance and equity system of infrastructure in Ethiopia is not flexible, not technology-oriented, not fair, and not easily solved. The results of in-depth interviews and focus group discussions (FGDs) showed that there is a lack of institutional capacity, infrastructure governance, and equity, which has negatively impacted the state- and nation-building processes in Ethiopia. According to the interviewees, so long as the unmet demand for infrastructure exists, it remains a key restrain on doing business in most Ethiopian regional states. This is due to the lack of integrated frameworks, as there are coordination failures (lack of proper government intervention, including a lack of proper understanding and implementation of the constitution and the federal system). In Ethiopia, to reduce these bottlenecks arising from the lack of institutional capacity, infrastructure governance, and equity and their effects on nation-building, first of all, the government has to critically hear the people, deeply assess the problems, and come to the point and then discuss the problems and the way forward with the society at large.
The Cu2–xSe nanoparticles were synthesized by high temperature pyrolysis, modified with aminated polyethylene glycol in aqueous solution and loaded with compound 2,2′–azobis[2–(2–imidazolin–2–yl)propane] dihydrochloride (AIPH). The obtained nanomaterials can induce photothermal effect and use heat to promote the generation of toxic AIPH radicals under the irradiation of near-infrared laser (808 nm), which can effectively kill cancer cells. A series of in vitro experiments can preliminarily prove that Cu2–xSe–AIPH nanomaterials have strong photothermal conversion ability, good biocompatibility and anticancer properties.
Copyright © by EnPress Publisher. All rights reserved.