This study investigated the utilization of Artificial Intelligence (AI) in the Recruitment and Selection Process and its effect on the Efficiency of Human Resource Management (HRM) and on the Effectiveness of Organizational Development (OD) in Jordanian commercial banks. The research aimed to provide solutions to reduce the cost, time, and effort spent in the process of HRM and to increase OD Effectiveness. The research model was developed based on comprehensive review of existing literature on the subject. The population of this study comprised HR Managers and Employees across all commercial banks in Jordan, and a census method was employed to gather 177 responses. Data analysis was conducted using Amos and SPSS software packages. The findings show a statistically significant positive impact of AI adoption in the Recruitment and Selection Process on HR Efficiency, which in turn positively impacted OD Effectiveness. Additionally, the study indicated that the ease-of-use of AI technologies played a positive moderating role in the relationship between the Recruitment and Selection Process through AI and HR Efficiency. This study concludes that implementing AI tools in Recruitment is vital through improving HR Efficiency and Organization Effectiveness.
In the face of growing urban problems such as overcrowding and pollution, we urgently need innovative ideas to build smarter and greener cities. Current urban development strategies often fail to address these challenges, revealing a significant research gap in integrating advanced technologies. This study addresses these gaps by integrating green technologies and artificial intelligence (AI), studying its impact on achieving smart and sustainable habitats and identifying barriers to effective use of these technologies, considering local variations in infrastructural, cultural, and economic contexts. By analyzing how AI and green technologies can be combined, this study aims to provide a vision that can be used to improve urban development planning. The results emphasize the significance of environmental responsibility and technological innovation in the development of sustainable urban environments and provide practical recommendations for improving the overall quality of life in cities through planning and urban planning.
This study conducted a systematic literature review on current and emerging trends in the use of artificial intelligence (AI) for community surveillance, using the PRISMA methodology and the paifal.ai tool for the selection and analysis of relevant sources. Five main thematic areas were identified: AI technologies, specific applications, societal impact, regulations and public policy. Our findings revealed exponential growth in the development and implementation of AI technologies, with applications ranging from public safety to environmental monitoring. However, this advancement poses significant challenges related to privacy, ethics and governance, driving a debate on the need for appropriate regulations. The analysis also highlighted the disparity in the adoption of these technologies among different communities, suggesting a need for inclusive policies to ensure equitable benefits. This study contributes to the understanding of the current scenario of AI in community policing, providing a solid foundation for future research and developments in the field.
This study examines the interplay between eco-friendly behaviour (Eco-FB) at multiple systemic levels, addressing the complexity beyond the scope of single-level models. We propose a comprehensive model incorporating traditional individual, organizational, and relational level concepts and a situational construct exemplified by Bali Island Recognition. This model was tested in Bali Island’s tourism firms through online and offline surveys of 500 tourism-related employees and their gateway communities across Bali Island. The research investigates the differences in pro-environmental conduct between two destinations’ social accountability (DSA) groups categorized as high and low DSA clusters. It further explores how ecological value, green intelligence, DSA, and sustainable travel affect public and private Eco-FB. The findings indicate that green intelligence has a strong positive connection with Eco-FB, and high DSA significantly impacts eco-friendly behaviour. This research enhances our understanding of Eco-FB by presenting a multilevel model incorporating the Bali Island factor, revealing distinctive impact mechanisms for both public and private Eco-FB.
Countering cyber extremism is a crucial challenge in the digital age. Social media algorithms, if designed and used properly, have the potential to be a powerful tool in this fight, development of technological solutions that can make social networks a safer and healthier space for all users. this study mainly aims to provide a comprehensive view of the role played by the algorithms of social networking sites in countering electronic extremism, and clarifying the expected ease of use by programmers in limiting the dissemination of extremist data. Additionally, to analyzing the intended benefit in controlling and organizing digital content for users from all societal groups. Through the systematic review tool, a variety of previous literature related to the applications of algorithms in the field of online radicalization reduction was evaluated. Algorithms use machine learning and analysis of text and images to detect content that may be harmful, hateful, or call for violence. Posts, comments, photos and videos are analyzed to detect any signs of extremism. Algorithms also contribute to enhancing content that promotes positive values, tolerance and understanding between individuals, which reduces the impact of extremist content. Algorithms are also constantly updated to be able to discover new methods used by extremists to spread their ideas and avoid detection. The results indicate that it is possible to make the most of these algorithms and use them to enhance electronic security and reduce digital threats.
This paper tries to understand economic, social and legal implications of the introduction and usage of MediSearch (AI search engine) in the Indian healthcare context. Discussing the economic ramifications, the paper highlights the potential for cost savings, the influence on healthcare accessibility, and the shifts in traditional medical paradigms. On the social side, the study explains ability of AI based platforms to bridge healthcare disparities, with a potential for enhancing general health literacy among the general population. From a legal standpoint, study highlights the concerns related to data privacy, regulatory issues, and possible malpractice implications. With the integration of these perspectives, the study also explains opportunities, challenges and future of MediSearch from the Indian health perspective.
Copyright © by EnPress Publisher. All rights reserved.