This article measures the performance of listed commercial banks in Vietnam and identifies factors influencing their efficiency. The study follows a two-stage approach: (i) In the first stage, scale efficiency scores from 2016 to 2022 are assessed using the Data Envelopment Analysis (DEA) method; (ii) In the second stage, Tobit regression analyzes internal factors, macroeconomic conditions, and the impact of Covid-19. Key findings show that internal factors such as return on assets positively affect efficiency, while the ratio of equity to total capital has a negative and statistically significant impact. Bank size positively influences efficiency scores. Macroeconomic factors, including economic growth and inflation, were statistically insignificant. However, the Covid-19 pandemic had a significant negative effect on bank efficiency.
This study aims to scrutinize specific long-term sustainability industrial indicators in Thailand as a representative of an emerging economy. The study uses a Bloomberg database comprising all Thai listed companies on the Stock Exchange of Thailand from 2013 to 2023. The research employs a two-step Generalized Method of Moments (GMM) statistics to assess the enduring impact on industrial sustainability. These results provide consistent, significant and positive relationships between asset turnover and sales with all industrial sustainability. The results additionally reveal that some other factors may moderate industrial sustainability but reveal the GDP growth rate and institutional shareholders are less likely to be corporate sustainability to all indicators. The results provide insight into valuable guidance to management teams, financial statements’ users, investors and other stakeholders on designing effective operations and investment strategies to improve sustainability.
Regions rich in natural resources often exhibit a high dependency on revenue from Revenue Sharing Funds (DBH). This dependency can pose long-term challenges, especially when commodity prices experience significant fluctuations. This study examines the role of Revenue Sharing Funds from Natural Resources (DBH SDA) on economic growth in 491 regencies/cities in Indonesia during the 2010–2012 period. The analysis employs panel data regression. The selection of this period was based on the occurrence of a resource boom characterized by a surge in global demand for natural resource commodities, accompanied by an increase in commodity prices. This condition positively impacted the revenues of both the nation and resource-rich regions. The results of the study show that economic growth is not influenced by DBH SDA but rather by General Allocation Funds (DAU). This indicates that the central government still plays a significant role in determining economic growth at the regency/city level in Indonesia. Regions need to prioritize economic diversification to reduce reliance on DBH SDA and DAU. Investment in productive sectors, such as infrastructure, education, and technology, can be a strategic approach to accelerating regional economic growth.
This study explores the determinants of control loss in eating behaviors, employing decision tree regression analysis on a sample of 558 participants. Guided by Self-Determination Theory, the findings highlight amotivation (β = 0.48, p < 0.001) and external regulation (β = 0.36, p < 0.01) as primary predictors of control loss, with introjected regulation also playing a significant role (β = 0.24, p < 0.05). Consistent with Self-Determination Theory, the results emphasize the critical role of autonomous motivation and its deficits in shaping self-regulation. Physical characteristics, such as age and weight, exhibited limited predictive power (β = 0.12, p = 0.08). The decision tree model demonstrated reliability in explaining eating behavior patterns, achieving an R2 value of 0.39, with a standard deviation of 0.11. These results underline the importance of addressing motivational deficits in designing interventions aimed at improving self-regulation and promoting healthier eating behaviors.
Electricity consumption in Europe has risen significantly in recent years, with households being the largest consumers of final electricity. Managing and reducing residential power consumption is critical for achieving efficient and sustainable energy management, conserving financial resources, and mitigating environmental effects. Many studies have used statistical models such as linear, multinomial, ridge, polynomial, and LASSO regression to examine and understand the determinants of residential energy consumption. However, these models are limited to capturing only direct effects among the determinants of household energy consumption. This study addresses these limitations by applying a path analysis model that captures the direct and indirect effects. Numerical and theoretical comparisons that demonstrate its advantages and efficiency are also given. The results show that Sub-metering components associated with specific uses, like cooking or water heating, have significant indirect impacts on global intensity through active power and that the voltage affects negatively the global power (active and reactive) due to the physical and behavioral mechanisms. Our findings provide an in-depth understanding of household electricity power consumption. This will improve forecasting and enable real-time energy management tools, extending to the design of precise energy efficiency policies to achieve SDG 7’s objectives.
This study examined socio-economic factors affecting Micro, Small, and Medium Enterprises (MSME) e-commerce adoption, focusing on gender, income, and education. Using the 2022 National Socio-Economic Survey (Susenas) data, a logistic regression model was employed to analyze key determinants of e-commerce utilization. Additionally, an online survey of 550 MSMEs across 29 provinces was conducted to assess the impact of digitalization on business performance. In comparison, an offline study of 42 MSMEs with low digital adoption provided insights into the barriers hindering digital transformation. A natural experiment was conducted to evaluate the effectiveness of behavioral interventions in promoting the adoption of e-payments and e-commerce. The main contribution of this study lies in integrating large-scale national survey data with experimental approaches to provide a deeper understanding of digital adoption among MSMEs. Unlike previous studies focusing solely on socio-economic determinants, this research incorporated a digital nudging experiment to examine how targeted incentives influenced e-commerce participation. The findings revealed that digital transformation significantly enhanced MSME performance, particularly in turnover, product volume, customer base, and worker productivity. Socio-economic factors such as gender, household head status, and social media access significantly influenced digital adoption decisions. Behavioral nudging proved effective in increasing MSME participation in e-commerce. Although this study was limited to Susenas 2022 data and survey responses, it bridges a critical research gap by linking socio-economic factors with behavioral interventions in MSME digitalization. The findings offer key insights for policymakers in formulating evidence-based strategies to drive MSME digital transformation and e-commerce growth in Indonesia.
Copyright © by EnPress Publisher. All rights reserved.