Purpose: This article explores the adoption of Artificial Intelligence (AI) in Human Resource Management (HRM) in the UAE, focusing on the critical challenges of fairness, bias, and privacy in recruitment processes. The study aims to understand how AI is transforming HR practices in the UAE, highlighting the issues of bias and privacy while examining real-world applications of AI in recruitment, employee engagement, talent management, and learning and development. Methodology: Through case study methodology, detailed insights are gathered from these companies to understand real-world applications of AI in HRM. A comparative analysis is conducted, comparing AI-driven HRM practices in UAE-based organizations with international examples to highlight global trends and best practices. Findings: The research reveals that while AI holds significant potential to streamline HR functions such as recruitment, onboarding, performance monitoring, and talent management, it also discusses challenges and strategies companies face and develop in integrating AI into their HRM processes, reflecting the broader context of AI adoption in the UAE’s HR landscape. Originality: This paper contributes to the growing body of literature on AI in HRM by focusing on the unique context of the UAE, a rapidly developing market with a highly diverse workforce. It highlights the specific challenges and opportunities faced by organizations in the UAE when implementing AI in HRM, particularly regarding fairness, bias, and data privacy.
The study aimed to investigate the concept of workplace equality as experienced and perceived by female librarians of Punjab, Pakistan. Through this investigation, the study aimed to contribute to the broader discourse on creating equitable and inclusive workplaces for women in the field of library and information science. A qualitative research method based on semi-structured interviews was employed to meet the objectives of the study. The interview guide was used to collect data from female librarians working in the Higher Education Commission’s (HEC) recognized public and private sector universities of the Punjab, Pakistan. According to the results, female librarians shared that they have faced gender-based discrimination in job allocation as male librarians were favored for tasks with additional wages or representation at corporate events. Private sector candidates reported issues related to career development opportunities as managers often restrict participation in seminars, conferences, and higher education pursuits. The study also highlighted that inequalities or discriminations affect employees motivation and enthusiasm. This study highlights issues of inequality from a female perspective in the library and information science field, contributing to a deeper understanding of the key factors to ensure equitable workplaces. This study may be a useful contribution to the body of research literature, as well as the findings may help in sensitizing the management and authorities to control the work environment to facilitate females, and to make female-oriented policies.
The use of geotechnologies combined with remote sensing has become increasingly essential and important for efficiently and economically understanding land use and land cover in specific regions. The objective of this study was to observe changes in agricultural activities, particularly agriculture/livestock farming, in the North Forest Zone of Pernambuco (Mata Norte), a political-administrative region where sugarcane cultivation has historically been the backbone of the local economy. The region's sugarcane biomass also contributes to land use and land cover observations through remote sensing techniques applied to digital satellite images, such as those from Landsat-8, which was used in this study. This study was conducted through digital image processing, allowing the calculation of the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Leaf Area Index (LAI) to assess vegetation cover dynamics. The results revealed that sugarcane cultivation is the predominant agricultural and vegetation activity in Mata Norte. Livestock farming areas experienced a significant reduction over the observed decade, which, in turn, led to an increase in agricultural and forested areas. The most dynamic spatiotemporal behavior was observed in the expansion and reduction of livestock areas, a more significant change compared to sugarcane areas. Therefore, land use and land cover in this region are more closely tied to sugarcane cultivation than any other agricultural activity.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
In wealthy nations, biofuel usage has grown in importance as a means of addressing climate change concerns, ensuring energy security, and promoting agricultural development. Because they understand the potential advantages of biofuel for rural development and job creation, governments have created policies and legislation to encourage the production of biofuel. However, the province of Limpopo hasn’t fully taken advantage of the potential to use biofuel production as a vehicle for job development, despite a higher demand for the fuel. There is currently a lack of understanding of the role of biofuel in promoting local development in developing regions. For this reason, this study made use of semi-structured interviews to explore how biofuel production can be used as an instrument for Local Economic Development (LED) in the Limpopo province of South Africa. The research investigated the determinants of empowerment that could impact the commercial feasibility of biofuel production in the province. It also identified the need for human resource development to get workers ready for jobs in Limpopo’s biofuel sector. The results showed that, provided certain conditions were met, the production of biofuel in Limpopo may be a useful instrument for creating local jobs. By highlighting the potential for job creation and the importance of human resource development, this research aims to facilitate evidence-based decision-making that can harness biofuel production for sustainable rural development in the region. The value of this study lies in its contribution to the understanding of biofuel’s role in LED, offering actionable insights for policymakers and stakeholders in Limpopo.
Copyright © by EnPress Publisher. All rights reserved.