The artificial intelligence (AI)-based architect’s profile’s selection (simply iSelection) uses a polymathic mathematical model and AI-subdomains’ integration for enabling automated and optimized human resources (HR) processes and activities. HR-related processes and activities in the selection, support, problem-solving, and just-in-time evaluation of a transformation manager’s or key team members’ polymathic profile (TPProfile). Where a TPProfile can be a classical business manager, transformation manager, project manager, or an enterprise architect. iSelection-related selection processes use many types of artifacts, like critical success factors (CSF), AI-subdomain’ integration environments, and an enterprise-wide decision-making system (DMS). iSelection focuses on TPProfiles for various kinds of transformation projects, like the case of the transformation of enterprises’ HRs (EHR) processes, activities, and related fields, like enterprise resources planning (ERP) environments, financial systems, human factors (HF) evolution, and AI-subdomains. The iSelection tries to offer a well-defined (or specific) TPProfile, which includes HF’s original-authentic capabilities, education, affinities, and possible polymathical characteristics. Such a profile can also be influenced by educational or training curriculum (ETC), which also takes into account transformation projects’ acquired experiences. Knowing that selected TPProfiles are supported by an internal (or external) transformation framework (TF), which can support standard transformation activities, and solving various types of iSelection’s problems. Enterprise transformation projects (simply projects) face extremely high failure rates (XHFR) of about 95%, which makes EHR selection processes very complex.
In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
In today’s competitive and complex business environment, achieving business excellence requires a combination of effective methodologies and strong leadership to drive and sustain organizational transformation. Lean Six Sigma (LSS), a proven methodology for improving operational efficiency, relies on effective leadership for successful implementation and lasting impact. This study examines how the integration of Lean, Six Sigma, and Total Quality Management (TQM) shapes leadership strategies that enhance organizational agility, resilience, and responsiveness to market dynamics. It highlights the crucial role of leadership in fostering collaboration, optimizing resource utilization, and cultivating a culture of continuous improvement. The study introduces the Structured Lean Leadership Framework as a strategic tool to develop the leadership capabilities essential for LSS success, addressing challenges such as weak leadership commitment, resistance to change, and communication barriers. Through the application of the DMAIC framework, Key Performance Indicators (KPIs), and Voice of Customer (VOC) analysis, the research aligns LSS with business objectives, customer needs, and sustainability goals. Additionally, it explores how combining LSS with Agile methodologies can improve operational efficiency, governance, and innovation, helping organizations better navigate future challenges. This research offers valuable insights for executives, practitioners, and researchers, supporting leadership development, data-driven decision-making, and long-term value creation. Future studies should focus on validating the Structured Lean Leadership Framework, exploring Agile-LSS integration in regulated industries, and examining the impact of Industry 4.0 technologies on LSS and leadership.
The paper assesses the threshold at which climate change impacts banking system stability in selected Sub-Saharan economies by applying the panel threshold regression on data spanning 1996 to 2017. The study found that temperature reported a threshold of −0.7316 ℃. Further, precipitation had a threshold of 7.1646 mm, while the greenhouse gas threshold was 3.6680 GtCO2eq. In addition, the climate change index recorded a threshold of −0.1751%. Overall, a non-linear relationship was established between climate change variables and banking system stability in selected Sub-Saharan economies. The study recommends that central banks and policymakers propagate the importance of climate change uncertainties and their threshold effects to banking sectors to ensure effective and stable banking system operations.
This study examined the impact of aluminium doping on the structural, electrical, and magnetic properties of Li(0.5)Co(0.75)AlxFe(2−x)O4 spinel ferrites (x =0.15 to 0.60). The samples were synthesised using the sol-gel auto-combustion technique, and they were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dielectric measurements, and vibrating sample magnetometry (VSM). All samples possessed a single-phase cubic spinel structure with Fd-3m space group, according to XRD analyses. SEM images showed the creation of homogeneous particles with an average size of about 21 nm. All samples had spinel ferrite phases, confirmed from FTIR spectra. DC electrical conductivity studies showed that the conductivity increased with increasing aluminium content up to x = 0.45 before dropping at x = 0.60. The maximum saturation magnetization value was found at x = 0.45, according to VSM measurements, which demonstrated that the magnetic characteristics were strongly correlated with the amount of aluminium.
Stress has evolutionary roots that help human beings evolve and survive. Existing workplace mental health models typically view stress as the direct cause of poor mental health. Such models focus on strategies to eliminate it. Guided by O’Connor and Kirtley’s integrated motivational-volitional (IMV) model, we posit that demanding jobs and high-stress environments do not directly impact an individual’s mental health but trigger a “sense of self” moderator (SSM), which then leads to mental health outcomes. This moderator is modified by the workplace’s organizational design and individual’s traits. We propose a Workplace Mental Health (WMH) Model, which suggests that by addressing these SSM modifiers through evidence-based interventions at organizational and individual levels, even in high-stress environments, organizations can have mentally healthy workforces and build high-performance workplaces. This paper assumes that stress is an inalienable part of any work environment and that a secular reduction in stress levels in modern society is infeasible. Although some individuals in high-stress job environments develop mental illness, many do not, and some even thrive. This differential response suggests that stress may act as a trigger, but an individual’s reaction to it is influenced more by other factors than the stress itself.
Copyright © by EnPress Publisher. All rights reserved.