Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Research networks organized around a particular topic are built as knowledge is produced and socialized. These are parts of a seminal or initial production, to which new authors and subtopics are added until research and knowledge networks are formed around a particular area. The purpose of the research was to find this type of relationship or network between authors, institutions, and countries that have contributed to the issue of the circular economy and specifically its relationship with sustainability. This allows those interested in the said object of study to know the research advances of the network, enter their research lines, or create new networks according to their interests or needs. The study used a bibliometric-type descriptive quantitative approach using the Scopus scientific database, the R Studio data analytics application, and the Bibliometrix library. The results were found to determine a relationship building from 2006, which makes it an emerging topic. However, the growth it has achieved in recent years of more than 31% shows a strong interest in the subject. Of the subtopics that have been addressed, sustainability, recycling, solid waste, wastewater, and renewable energy. Similarly, sectors such as construction, the automotive industry, tourism, cities, the agricultural sector, the chemical industry, and the implementation of technologies 4.0 and 5.0 in their processes stood out. The most prominent country in the scientific approach to this area is Italy. The most prominent author for his citations is Molina-Moreno, the source of knowledge that stands out for his contributions is the University of Granada and different networks have been built around their knowledge.
One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.
Using individual- and panel country-level data from 118 countries for the period 1981–2020, this study investigates the effects of national- and individual-level economic and environmental factors on subjective well-being (SWB). Two individual SWB indicators are selected: the feeling of happiness and life satisfaction. Additionally, two environmental factors are also considered: CO2 emissions by country level and personal perspective on environmental protection. The ordered probit estimation results show that CO2 emissions have a significant negative effect on SWB, and a higher perspective on environmental protection has a significant and positive effect. Compared with the average marginal effect of national income, CO2 emissions are a more important determinant of SWB when considering a personal perspective on protecting the environment. The estimation results are robust to various estimation model specifications: inclusion of additional air pollutants (CH4 and N2O), PM 2.5 and various sample groupings. This study makes a novel contribution by providing comprehensive insights into how both individual environmental attitudes and national pollution levels jointly influence subjective well-being.
Stress has evolutionary roots that help human beings evolve and survive. Existing workplace mental health models typically view stress as the direct cause of poor mental health. Such models focus on strategies to eliminate it. Guided by O’Connor and Kirtley’s integrated motivational-volitional (IMV) model, we posit that demanding jobs and high-stress environments do not directly impact an individual’s mental health but trigger a “sense of self” moderator (SSM), which then leads to mental health outcomes. This moderator is modified by the workplace’s organizational design and individual’s traits. We propose a Workplace Mental Health (WMH) Model, which suggests that by addressing these SSM modifiers through evidence-based interventions at organizational and individual levels, even in high-stress environments, organizations can have mentally healthy workforces and build high-performance workplaces. This paper assumes that stress is an inalienable part of any work environment and that a secular reduction in stress levels in modern society is infeasible. Although some individuals in high-stress job environments develop mental illness, many do not, and some even thrive. This differential response suggests that stress may act as a trigger, but an individual’s reaction to it is influenced more by other factors than the stress itself.
Copyright © by EnPress Publisher. All rights reserved.