The competition for financial support among non-profit organizations (NPOs) has been intense for quite some time. It is crucial for these organizations to boost their competitive edge by gaining a deep understanding of donor behavior and fostering ongoing interactions with them. In today’s world, where convenience and efficiency are highly valued, factors such as the timing and location of donations can deter potential donors from contributing. Rigid and inconvenient donation methods can also hinder the donation process. As a result, this study aims to explore the role of convenience within the donation process, specifically investigating whether the convenience of online donation platforms provided by non-profit organizations significantly influences donors’ propensity to make contributions. This research differentiates the range of services offered by non-profit organizations and employs a questionnaire survey to examine the websites of the NPOs. A total of 466 valid responses were gathered. The empirical findings indicate that donors prioritize simplicity and speed in the online donation process. Additionally, donors prefer websites where they can easily locate necessary information and various details about the donation process, with relevant links that minimize time waste and complexity in navigating the website. The study also reveals that the convenience factor significantly influences donation behavior. Based on these insights, the study offers recommendations for non-profit organizations on how to provide donor-centric services by focusing on the aspects of convenience that donors value most in the donation process.
This study explores relationships of prosocial rule-breaking (PSRB) on employee well-being in the hospitality industry. The study integrates the dynamics such as employee engagement as a mediator, emotional intelligence, and job autonomy as moderating variables. It offers insights into complex dynamics shaping employee behavior and well-being of hospitality industry. The data was collected through structured questionnaire form hospitality sector. The results showed significant positive relations between PSRB, employee engagement, and well-being. Emotional intelligence appeared as a moderator, escalating the relationship between PSRB and employee engagement. Job autonomy also escalating the relationship as moderator between employee engagement and well-being.
Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
Among carbon nanoparticles, fullerene has been observed as a unique zero-dimensional hollow molecule. Fullerene has a high surface area and exceptional structural and physical features (optical, electronic, heat, mechanical, and others). Advancements in fullerene have been observed in the form of nanocomposites. Application of fullerene nanocomposites has been found in the membrane sector. This cutting-edge review article basically describes the potential of fullerene nanocomposite membranes for water remediation. Adding fullerene nanoparticles has been found to amend the microstructure and physical features of the nanocomposite membranes in addition to membrane porosity, selectivity, permeation, water flux, desalination, and other significant properties for water remediation. Variations in the designs of fullerene nanocomposites have resulted in greater separations between salts, desired metals, toxic metal ions, microorganisms, etc. Future investigations on ground-breaking fullerene-based membrane materials may overcome several design and performance challenges for advanced applications.
This research implements sustainable environmental practices by repurposing post-industrial plastic waste as an alternative material for non-conventional construction systems. Focusing on the development of a recycled polymer matrix, the study produces panels suitable for masonry applications based on tensile and compressive stress performance. The project, conducted in Portoviejo and Medellín, comprises three phases combining bibliographic and experimental research. Low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) were processed under controlled temperatures to form a composite matrix. This material demonstrates versatile applications upon cooling—including planks, blocks, caps, signage, and furniture (e.g., chairs). Key findings indicate optimal performance of the recycled thermoplastic polymer matrix at a 1:1:1 ratio of LDPE, HDPE, and PP, exhibiting 15% deformation. The proposed implementation features 50 × 10 × 7 cm panels designed with tongue-and-groove joints. When assembled into larger plates, these panels function effectively as masonry for housing construction, wall cladding, or lightweight fill material for slab relieving.
This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
Copyright © by EnPress Publisher. All rights reserved.