Google Earth images in the Marche Region of Central Italy revealed a circular structure consisting of a ring system made up of concentric hills and valleys. Cartography, DEM, geological, and available geophysical data were used to constrain the possible origin of the structure. Located in the Messinian foredeep deposits of the Central Apennines, it has a rim diameter of 3.75 km and a central uplift connected to its southernmost part. As it was formed in the clays of the Lower Pliocene, and clays are believed to have emerged definitively after the Upper Pliocene, its age might be constrained to the Lower Pleistocene. Similar concentric structures are usually found in impact craters, sedimentary domes, and volcanic landforms. As salt domes and magmatic activity are not found in this region, this study seeks to validate the results of previous work that it was the result of an ancient impact crater of hydrological, brachyanticline, or clayey diapiric origins. Specifically, an observed second ring portion with a curvature radius about double the first in size will be investigated in this work. This second ring portion appears to be concentric to the first one and is visible along its northern and western parts. Although double concentric rings are usually due to impact craters, the absence of the ring portion in the other two directions and the probable deviation of a river, deduced by studying hydrography, support the hypothesis that it might be of clay diapir origin.
Based on the analysis of the development and present situation of the standardization of forest cultivation in China and combined with the characteristics of forest cultivation, the main basis, principles and methods of establishing forest cultivation standard system were discussed and put forward. A standard system of forest cultivation was established, which included six sub-systems, namely, forest cultivation foundation, prenatal planning, artificial afforestation, tending management, harvest renewal etc. The ideas and management suggestions for standardization of forest cultivation in China in the future were put forward, such as to establish an authoritative and complete database and a supporting management system.
Polymers obtained from renewable sources are gaining popularity over their petroleum based counter parts in recent years due to their capability to address the environmental pollution related concerns emanating from the widespread usage of synthetic polymers. Even though the polymers from renewable sources are attractive in an environmental point of view, some of the property limitations and the high cost of these materials pose limitations for their extensive commercial applications. These aspects opened the door for a large chunk of research activities in development of polyblends and composites containing polymers from renewable sources as one of the components. Poly (lactic acid) (PLA) is one of the most discussed and commercialized polymer originated from renewable resources. Even though it has many useful properties, certain disadvantages like high brittleness, low impact resistance etc. limit the wide spread commercialization of PLA. In this review article, the recent research activities which are aimed to fill this gap by various modifications of PLA are discussed with special emphasis on the latest research advancements in the field of biodegradable and non biodegradable systems containing PLA.
To save patients’ lives, it is important to go for an early diagnosis of intracranial hemorrhage (ICH). For diagnosing ICH, the widely used method is non-contrast computed tomography (NCCT). It has fast acquisition and availability in medical emergency facilities. To predict hematoma progression and mortality, it is important to estimate the volume of intracranial hemorrhage. Radiologists can manually delineate the ICH region to estimate the hematoma volume. This process takes time and undergoes inter-rater variability. In this research paper, we develop and discuss a fine segmentation model and a coarse model for intracranial hemorrhage segmentations. Basically, two different models are discussed for intracranial hemorrhage segmentation. We trained a 2DDensNet in the first model for coarse segmentation and cascaded the coarse segmentation mask output in the fine segmentation model along with input training samples. A nnUNet model is trained in the second fine stage and will use the segmentation labels of the coarse model with true labels for intracranial hemorrhage segmentation. An optimal performance for intracranial hemorrhage segmentation solution is obtained.
The Carthamus tinctorius, commonly known as safflower, is an annual plant with numerous branches and thorns from the Asteraceae family. For this experiment, three treatments were applied to the pots: humic acid, spirulina microalgae, and a mixture of both to analyze their bioactivation effects. These treatments were applied three times per week over the course of two weeks, with irrigation taking place every other day. The wet weight of the aerial parts of the harvested plants was measured and placed in liquid nitrogen, then stored in a freezer. Chlorophyll, carotenoids, proline, protein, phenol, antioxidants, and malondialdehyde were measured. The results show that several bioactivators significantly increased the growth, chlorophyll, carotenoids, protein, and proline of safflower plants when compared to the control. The three treatments reduced the antioxidant and malondialdehyde content significantly. In contrast to the control condition, the mixture of humic acid and spirulina microalgae, as well as humic acid alone, decreased the phenolic content. The findings demonstrated that humic acid and spirulina microalgae can serve as positive plant bioactivators for safflower by boosting its growth and reducing stress.
According to the World Health Organization (WHO), breast cancer is among the most common cancers worldwide. Most of the anticancer agents have been showing a variety of side effects. Recently, bacterial proteins have been investigated as promising anticancer agents. Azurin is a bacterial cupredoxin protein secreted from Pseudomonas aeruginosa and has been reported as a potent multi-targeting anticancer agent, which makes it an appropriate candidate for drug delivery. Azurin may be delivered to cancer cells using different carriers like polymeric micro and nanoparticles. In the present study, azurin was extracted from the bacterial host and loaded into chitosan particles. Then its effect on MCF-7 cell line was investigated. Chitosan-azurin particles were made using the ion gelation method. Results showed that chitosan-azurin particles are about 200 nm, and the loading of the protein in particles did not affect its integrity. The MTT assay showed a significant reduction in cell viability in azurin and chitosan-azurin-treated cells. The toxicity level after 5 days was 63.78% and 82.53% for free azurin and chitosan-azurin-treated cells, respectively. It seems using an appropriate carrier system for anticancer proteins like azurin is a promising tool for developing low side effect anticancer agents.
Copyright © by EnPress Publisher. All rights reserved.