Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Simulation training in dental medical eduaction is a modern high-tech approach in providing quality higher education. Simulation training immerses students in realistic scenarios, allowing them to develop both technical and non-technical skills essential for effective patient care. This study highlights key contemporary issues in high-tech simulation training for dental education and consolidates its rationale and benefits. We searched the databases PubMed, Scopus, Web of Science, and ResearchGate. This review includes 36 articles published in English, Russian, and Ukrainian from 2020 to 2024. Non-peer-reviewed papers or those not published in indexed journals were not considered. Simulation training was found to impact integration of theory and practice, training a wide range of psychomotor skills, development of complex clinical competences, cultivating confidence, empathy and patient-oriented care, neuroplasticity of the brain and the cognitive load. Pedagogical benefits and the place of simulation training in the curriculum were also discussed.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
This study aims to determine the extent to which talent identification is implemented in talent management. A Systematic Literature Review (SLR) was conducted to summarize the application of talent identification in the last six years. Researchers use Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) to process scientific articles. The literature reveals that while topics related to talent management garner significant attention, research on talent identification within talent management remains relatively scarce despite a gradual increase each year. We compared documents indexed by Scopus Q1 and Q2. The results show that the United States accounted for a significant portion of research on talent identification, representing 16% of the total existing research. Researchers have conducted extensive studies on the medical and pharmaceutical sectors, public services, tourism, and hospitality. The number of citations varied greatly from 1 to 93, with a median value of 20. These studies have also used various research methods with different theoretical bases and produced different analyses. This finding enriches the perspective of talent identification.
This study aims to investigate the impact of dance training on the mental health of college students. Utilizing experimental research methods, we established an experimental group and a control group to compare changes in mental health dimensions—including anxiety, depression, self-esteem, and social skills—between the two groups before and after 12 weeks of dance training. The findings indicate that dance training significantly reduces levels of anxiety and depression, while also improving self-esteem and social skills, thereby enhancing social adaptability. These results provide empirical support for the use of dance as an intervention for mental health and offer new insights for mental health education in colleges and universities.
The maize commodity is of strategic significance to the South African economy as it is a stable commodity and therefore a key factor for food security. In recent times climate change has impacted on the productivity of this commodity and this has impacted trade negatively. This paper explores the intricate relationship between climatic factors and trade performance for the South African maize. Secondary annual time series data spanning 2001 to 2023, was sourced from an abstract from Department of Agriculture, Land Reform and Rural Development (DALRRD) and World Bank’s Climate Change Knowledge Portal. Autoregressive Distributed Lag (ARDL) cointegration technique was used as an empirical model to assess the long-term and short-term relationships between explanatory variables and the dependent variable. Results of the ARDL model show that, average annual rainfall (β = 2.184, p = 0.056), fertilizer consumption (β = 1.919, p = 0.036), gross value of production (β = 1.279 , p = 0.006) and average annual surface temperature (β = −0.650, p = 0.991) and change in temperature for previous years, (β = −0.650, p = 0.991) and the effects towards coefficient change for export volumes, (β = 0.669, p = 0.0007). In overall, as a recommendation, South African policymakers should consider these findings when developing strategies to mitigate the impacts of some of these climatic factors and implementing adaptive strategies for maize producers.
Copyright © by EnPress Publisher. All rights reserved.