This study validates the Intercultural Competence and Inclusion in Education Scale (ICIES), a novel instrument designed to assess students’ perceptions of inclusivity and intercultural competence in multiethnic secondary schools. Using a sample of 276 high school students from Western Romania, the ICIES identified three dimensions: ethnic appreciation and support, intercultural engagement and integration, and school unity and cohesion. Exploratory factor analysis confirmed the scale’s structural validity, while network analysis revealed key interconnections among its components. Findings highlight the critical role of inclusive teaching strategies and school cohesion in fostering intercultural competence. The ICIES provides educators and policymakers with actionable insights for designing interventions that promote empathy, mutual respect, and a sense of belonging in diverse school settings. These results contribute to the development of educational policies aimed at fostering inclusion and addressing the needs of increasingly multicultural classrooms.
This study examines how Artificial Intelligence (AI) enhances Sharia compliance within Islamic Financial Institutions (IFIs) by improving operational efficiency, ensuring transparency, and addressing ethical and technical challenges. A quantitative survey across five Saudi regions resulted in 450 validated responses, analyzed using descriptive statistics, ANOVA, and regression models. The findings reveal that while AI significantly enhances transparency and compliance processes, its impact on operational efficiency is limited. Key barriers include high implementation costs, insufficient structured Sharia datasets, and integration complexities. Regional and professional differences further underscore the need for tailored adoption strategies. It introduces a novel framework integrating ethical governance, Sharia compliance, and operational scalability, addressing critical gaps in the literature. It offers actionable recommendations for AI adoption in Islamic finance and contributes to the global discourse on ethical AI practices. However, the Saudi-specific focus highlights regional dynamics that may limit broader applicability. Future research could extend these findings through cross-regional comparisons to validate and refine the proposed framework. By fostering transparency and ethical governance, AI integration aligns Islamic finance with socio-economic goals, enhancing stakeholder trust and financial inclusivity. The study emphasizes the need for targeted AI training, the development of structured Sharia datasets, and scalable solutions to overcome adoption challenges.
LEED (Leadership in Energy and Environmental Design) is a certification program for quantitatively assessing the qualifications of homes, non-residential buildings, or neighborhoods in terms of sustainability. LEED is supported by the U.S. Green Building Council (USGBC), a nonprofit membership-based organization. Worldwide, thousands of projects received one of the four levels of LEED certification. One of the five rating systems (or specialties) covered by LEED is the Building Design and Construction (BD + C), representing non-residential buildings. This rating system is further divided into eight adaptations. The adaptation (New Construction and Major Renovation) or NC applies to newly constructed projects as well as those going through a major renovation. The NC adaptation has six major credit categories, in addition to three minor ones. The nine credit categories together have a total of 110 attainable points. The Energy and Atmosphere (EA) credit category is the dominant one in the NC adaptation, with 33 attainable points under it. This important credit category addresses the topics of commissioning, energy consumption records, energy efficiency, use of refrigerants, utilization of onsite or offsite renewable energy, and real-time electric load management. This study aims to highlight some differences in the EA credit category for LEED BD + C:NC rating system as it evolved from version 4 (LEED v4, 2013) to version 4.1 (LEED v4.1, 2019). For example, the updated version 4.1 includes a metric for greenhouse gas reduction. Also, the updated version 4.1 no longer permits hydrochlorofluorocarbon (HFC) refrigerants in new heating, ventilating, air-conditioning, and refrigeration systems (HVAC & R). In addition, the updated version 4.1 classifies renewable energy into three tiers, differentiating between onsite, new-asset offsite, and old-asset offsite types.
This article examines how financial technology determines bank performance in different EU countries. The answer to that question would allow banks to choose their development policy. The paper focuses on the main and most popular bank services that are linked to financial technology. A SWOT analysis of FinTech is also presented to show the benefits and drawbacks of FinTech. FinTech-based services are very diverse and are provided by financial firms and banks alike. This paper looks at the financial technology provided by banks: internet usage (internet banking), number of ATMs, credit transfers in a country, percentage of the population in a country holding a debit or credit card and whether that population has received or made a digital payment. Using the multi-criteria assessment methods of CRITIC and EDAS, the authors analysed and compared the countries of the European Union and the financial technology used in them. As a result of the application of these methods, the EU countries under consideration were ranked in terms of the use of financial technology. Subsequently, three banks from different countries with different levels of the use of financial technology were selected for the study. For these banks, financial ratios of profitability were calculated to characterise their performance. Correlation and pairwise regression analyses between the banks’ profitability ratios and financial technology were used to assess the relationship and influence between these ratios. The main conclusion of the study focuses on the extent to which financial technology influences the performance of banks in the selected countries. It is likely that further research will try to take into account the size of the country’s population when analysing all financial technologies. Researchers also needed to find out what influence financial technologies have on the such financial indicators as operational efficiency (costs), financial stability, and capital adequacy.
In this study, we consider the extended Brinkman's-Darcy model for a triple diffusive convection system which consists of some parameters such as Taylor number (Ta), Solutal Rayleigh numbers (RC1 , RC2 ), and Prandtl number (Pr). To investigate the range of these parameters, a dynamical system of the Ginzburg-Landau equation is developed. The parametric analysis and comparative study of the model for the three Rayleigh numbers which leads to the clear fluid layer, sparsely packed porous layer, and densely packed porous layer is done with the help of bifurcation maps and the Lyapunov exponents. It is found that for a certain range of parameters, the system exhibits a chaotic behaviour.
Creating a crop type map is a dominant yet complicated model to produce. This study aims to determine the best model to identify the wheat crop in the Haridwar district, Uttarakhand, India, by presenting a novel approach using machine learning techniques for time series data derived from the Sentinel-2 satellite spanned from mid-November to April. The proposed methodology combines the Normalized Difference Vegetation Index (NDVI), satellite bands like red, green, blue, and NIR, feature extraction, and classification algorithms to capture crop growth's temporal dynamics effectively. Three models, Random Forest, Convolutional Neural Networks, and Support Vector Machine, were compared to obtain the start of season (SOS). It is validated and evaluated using the performance metrics. Further, Random Forest stood out as the best model statistically and spatially for phenology parameter extraction with the least RMSE value at 19 days. CNN and Random Forest models were used to classify wheat crops by combining SOS, blue, green, red, NIR bands, and NDVI. Random Forest produces a more accurate wheat map with an accuracy of 69% and 0.5 MeanIoU. It was observed that CNN is not able to distinguish between wheat and other crops. The result revealed that incorporating the Sentinel-2 satellite data bearing a high spatial and temporal resolution with supervised machine-learning models and crop phenology metrics can empower the crop type classification process.
Copyright © by EnPress Publisher. All rights reserved.