In April 2023, the government of Changshu City, in Jiangsu Province, China, announced that it would officially use digital Chinese Yuan (E-CNY) as a method of wage payment to the government and state-owned enterprises staff starting in May. With the gradual improvement and application of E-CNY technologies, such as no electricity, no internet payment (offline payment), and the programmability of smart contracts, E-CNY will be officially used in China. CNN said China is on the verge of a cashless society. The advantages of E-CNY have a positive role in promoting the Chinese government’s implementation of the development goals of a low-carbon and sustainable economy. However, artificial intelligence (AI) trust concerns are the primary bottleneck in the current development based on intelligent algorithms and digital information technology. AI trust concerns are affecting the scope of use of E-CNY, and it may need to achieve effective scale-use, making it promote low-carbon and sustainable development. From the industry perspective, this article selects the housing rental enterprises, which are challenging to develop and energy-intensive, to analyze the theoretical approach and practical impact of E-CNY in promoting the low-carbon and sustainable development of China’s rental housing economy. Meanwhile, from the perspective of Chinese consumers, the impact of AI trust concerns on E-CNY in promoting low-carbon and sustainable development is analyzed in this article.
The state delivery of affordable and sustainable housing continues to be a complicated challenge in Africa, and there is a need to encourage private sector participation. As a result, this study examines the risks associated with private sector participation in affordable housing and supporting infrastructure investment and the strategies towards mitigating the risks from an Afrocentric perspective. The evidence from a systematic literature review was coupled with the opinion of an international expert panel to address the paper’s aim and provide recommendations for developing improved housing and supporting infrastructure in Sub-Saharan Africa. The review outcomes and the qualitative data from the panel discussion were analysed using thematic analysis. The results revealed that market dynamics, land supply and acquisition constraints, cost of construction materials, unsupportive policies, and technical and financial factors constitute risks to affordable housing in the region. Mitigation strategies include leveraging joint efforts, strengths, and resource bases, increasing access to land and finance for private sector participation, developing a supportive government framework to promote an enabling environment for easy access to land acquisition and development finance, local production of building materials, research and technology adoption. In line with the United Nations (UN) Agenda 2030 targets and principles, reforms are required across the housing value chain, involving the private sector and community. Application of the study’s recommendations could minimise the risks of affordable housing delivery and enhance private sector participation.
We studied the role of industry-academic collaboration (IAC) in the enhancement of educational opportunities and outcomes under the digital driven Industry 4.0 using research and development, the patenting of products/knowledge, curriculum development, and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical literature were reviewed to provide a background for this research. The investigator used mainly principal (primary) data from a sample of 230 respondents. The primary statistics were acquired through a questionnaire. The statistics were evaluated using the structural equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate that the direct total effect of Artificial intelligence (Aint) on educational opportunities (EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying that changes in Aint have a pronounced influence on EduOp. Additionally, considering the indirect effects through intermediate variables, Research and Development (Res_dev) and Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on EduOp. Res_dev exhibits a negative indirect effect (Coef = −0.009969, p = 0.000) suggesting that increased research and development may dampen the impact of Aint on EduOp against a priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000), indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp. Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge on the effective deployment of artificial intelligence, which has been shown to enhance educational opportunities and outcomes under the digital driven Industry 4.0 in the study area.
COVID-19 pandemic has caused many design bid build projects to suffer losses. Design bid build or DBB has the disadvantage of depth partnering. The research purpose is to reveal the depth of partnering of DBB, the characteristics of existing partnering in DBB through detection in each project life cycle in DBB, then efforts to increase DBB partnering to partnering in integrated project delivery (IPD). The methodology used is secondary data from three project DBB, then validation using focused group discussions (FGD) with expert judgment, then the Delphi method to analyse and propose recommendations. This project recommends that DBB project can improve the project performance so stakeholder can increase partnering toward integrated project delivery (IPD) partnering. This research can be used for increasing partnering in DBB projects towards partnering in IPD. This research will produce strategic recommendations that can be utilized by stakeholders (owner, contractor, designer) in improving project performance to generate great value for the project, will result in long-term project sustainability, improve relationships, and learn valuable lessons for future projects. DBB projects usually experience many problems due to the competitive nature of partnering for owners, contractors, and designers, so it is necessary to develop an overall strategy as an option to improve partnering in DBB project contracts. This research will help create a sustainable project by the owner, contractor, and designer.
City planning is becoming more and more crucial as modernization and urbanization progress quickly. Making maps is an essential and helpful way in the city planning process for gathering data about the layout of a city and its elements, including the roads, traffic, buildings, and environment. Thanks to advancements in technology, computer software is now used to create maps, yielding more accurate and varied results. As a result, cartography is now closely related to and plays a crucial part in city planning. This brief essay will discuss the value of cartography in urban development and planning, as well as the connection between the two.
Water splitting has been one of the potential techniques as a clean and renewable energy resource for the fulfillment of world energy demands. One of the major aspects of this procedure is the exploitation of efficient and inexpensive electrocatalysts due to the fact that the water oxidation procedure is accompanied by a delayed reaction. In this research, ZnO-CoFe2O4 nanostructure was successfully synthesized via the green method and green resources from cardamom seeds and ginger peels for oxygen evolution reaction (OER). The modified Glassy carbon electrode (GCE) with ZnO-CoFe2O4 is effective for the electrochemical water oxidation interaction since it has sufficient electrical strength and excellent catalytic performance. The creation of rice-like and small granular structures of ZnO-CoFe2O4 nano-catalysts was confirmed by characterization methods such as XRD, FESEM, EDS and MAP. According to the achieved results, in the electrolysis of water, with in-cell voltage of 1.40 V and 50 mA cm–2 for current density in a 0.1 M KOH electrolyte and OER only has 170 mV overpotentials.
Copyright © by EnPress Publisher. All rights reserved.